

1.1 Introduction

Hindalco Industries Limited (Hindalco) is one among the flagship companies of the Aditya Birla Group of Industries and is one of the largest corporate groups in India. This group is a leading manufacturer of Aluminum in India, having integrated facilities encompassing bauxite, mining, refining and smelting to achieve Aluminum.

Various processing units of Hindalco are strategically located in different parts of the nation to achieve optimum benifits. Over the past few decades the group has grown multifold in its production capacities, product mix and diversification in mining. The Chhattisgarh Environment Conservation Board (CECB) granted permission for establishing the Bauxite Mine to Hindalco at block Tatijharia, Kudag and Samri mines in Balrampur District of Chhattisgarh State.

HINDALCO INDUSTRIES LTD., awarded the work to M/s ANACON LABORATORIES PVT. LTD. Nagpur (ALPL) for carrying out Environmental monitoring of parameters for assessing pollution levels and preparation of monthly reports (*January-February-March-2018*) as per the requirement of Chhattisgarh Environment Conservation Board (CECB) and Ministry of Environment and Forest (MoEF) for Kudag mining lease in Balrampur District, Chhattisgarh State.

1.2 Background Information of Kudag Mine

Hindalco was granted Kudag Bauxite mining lease over an area of 377.116 hec. in Kudag village in Post office Dumarkholi, Tehsil Samri(Kusmi) of Balrampur district, Chhattisgarh on 24/12/1996 for a period of 20 years. The mining operations were started on 02/07/1997. The production capacity of Bauxite is 0.6 Lakh Tonnes Per Annum (LTPA).

1.3 Salient Features of Kudag Bauxite Mine

The deposits occur in Kudag block, Post office Dumarkholi Tehsil Samri(Kusmi) of Balrampur district. This deposit has been identified as one of the resources to cater the raw material requirements of the Hindalco Alumina refinery at Renukoot, Uttar Pradesh. The salient features of the project are presented below :(**Table1**).

Hindalco Industries Limited Kudag Mining Environmental Status Report for January-2018 To March-2018

Table 1

Salient Features of Kudag Bauxite Mines

S.No.	Particulars	Details
1.	Survey of India Toposheet	64 M /15
	No.	
2.	Latitude	23 ⁰ 26' 02"N to 23 ⁰ 29' 00"N
3.	Longitude	83 ⁰ 51' 00"E to 83 ⁰ 59' 00"E
4.	Elevation	1145-m above Mean Sea Level
5.	Climatic Conditions	Annual maximum temperature : 30.3°C
	(as per IMD, Ambikapur)	Annual minimum temperature : 17.7 [°] C
		Average annual rainfall : 1401.1 mm
6.	Mining lease area	377.116 Hec.
7.	Method of mining	Open cast (Semi-Mechanized)
8.	Mode of transportation	Trucks
9.	Landuse	Agricultural and Barren land
10.	Nearest Road	Samri to Kusmi (17 km)
11.	Nearest Airport	Ranchi Airport (151.09 Km)
12.	Nearest Town	Ambikapur (127 km, SW)

1.4 Environmental Monitoring

Regular monitoring of environmental parameters is of immense importance to assess the status of environment during mining operation. With the knowledge of baseline conditions, the monitoring program will serve as an indicator for any deterioration in environmental conditions due to mining operation of the project. Suitable mitigation steps will be taken in time to safeguard the environment based on monitoring reports. Monitoring is important in the control of pollution since the efficiency of control measures can only be determined by monitoring.

In order to find out the impact of mining activity on sensitive receptors, it is necessary to monitor Environmental Quality to know the level of concentrations of pollutants within and around the mining lease area. Accordingly Hindalco Industries through ALPL has been monitoring air, water and noise quality on monthly basis during these months **(Table-2)**.

1.5 Air Environment

1.5.1 Ambient Air Quality Monitoring

Ambient Air Quality and Fugitive emission monitored at 8 following locations with reference to Kudag mine lease area shown in **(Fig.-1)**.

Table 2

Locations of Ambient Air Quality Monitoring (AAQM)& Fugitive Emission (377.116 hec.)

Sr. No.	Core Zone	Sr.	Buffer Zone
1	Sairaidh Campus	5	Jaljali Village
2	New Kudag/Nr.Weigh Bridge	6	Samri Chowk/Nr. Old Weigh Bridge
3	Old Kudag/Mining Area	7	Rajendrapur
4	Khas Kudag	8	Tatijharia Village

The sampling stations are selected at the above mentioned locations, in downwind and upwind directions of the mining site. ALPL is carrying out regular monitoring for PM_{2.5}, RPM(PM₁₀), SO₂, NO_x and SPM, RSPM, SO₂, NO_x, Pb, Hg, As and Cr at above Ambient Air Quality Monitoring (AAQM) locations and Fugitive Emission. The dust fall rate was measured in the mining area and Khaskudag during January-February-March-2018. The AAQM sampling sites are selected considering seasonal variation in wind speed and wind direction.

Sampling Duration and Frequency

Ambient air quality monitoring was carried out for the parameters $PM_{2.5}$, RPM (PM_{10}), SO₂, NOx and SPM, RSPM, SO₂, NO_x Pb, Hg, As and Cr from January-February-March-2018 as per CPCB norms. Sampling conducted duration and Frequency is given in (**Table 3**).

Data is compared with the standards mentioned in the Gazette Notification of the Central Pollution Control Board (CPCB) (Nov-20, 1994) and as per consent conditions mentioned in consent letter.

MONITORED PARAMETERS AND FREQUENCY OF SAMPLING

Methods and Instruments used for Sampling

The air samples were analyzed as per methods specified by Central Pollution Control Board (CPCB).

The levels of Suspended Particulate Matter (SPM), Respirable Particulate Matter (RPM), Sulphur Dioxide (SO₂), Oxides of Nitrogen (NO_X), Pb, Hg, As and Cr were monitored for establishing the baseline status. SPM and RPM was collected with the help of Respirable Particulate Sampler operating 24 hours by drawing air which passes through the cyclone at the rate of 1.0 -1.3 m³/min which collects the particles less than 10 μ m diameter over glass fiber filter paper and the bigger particulates from 10 to 100 μ m are collected into the cup provided at the bottom of the cyclone. The dust deposited over the filter paper is measured as RPM and the smaller particulates from 2.5 μ m are collected into the Membrane Filter Paper. The dust fall rate was measured using dust fall jar. The jar was exposed for one month in the mining area and Samri Chowk during pre and post monsoon period. The jar was filled with 2 lit of distilled water. The water in the jar is mixed with copper sulphate solution (0.02 N solutions) to prevent any growth of algae. The water level in the jar is constantly maintained in such a way that 2 lit of water is always retained. The measurement techniques used for various pollutants and other details are given in **(Table 4)**.

Sampling was carried out continuously for 24 hourly monitoring twice a week at each station during the stipulated study period using pre-calibrated Respirable Dust Samplers in each of the stations.

Earmarked samples were collected for Particulate Matter- PM_{10} , Particulate Matter- $PM_{2.5}$, SO₂ and NOx for 24 hourly. Collected samples were sent to Laboratories for analysis.

The baseline data of air environment is generated for the parameters namely: Suspended Particulate Matter (SPM), Particulate Matter (PM_{10}), Particulate Matter ($PM_{2.5}$), Sulphur Dioxide (SO₂), Oxides of Nitrogen (NO_x), Lead (Pb), Mercury (Hg), Arsenic (As) and Chromium (Cr). **Table-4.0**

<u>Table-3.0</u>

Parameters	Sampling frequency
Suspended Particulate Matter	24 hourly sample twice a week for Three months
Respirable Particulate Matter	24 hourly sample twice a week for Three months
Particulate Matter 2.5	24 hourly sample twice a week for Three months
Sulphur dioxide (SO ₂)	24 hourly sample twice a week for Three months
Oxides of Nitrogen (NOx)	24 hourly sample twice a week for Three months
Pb, Hg, As, Cr	8 hourly basis for 24 hour sample for three months

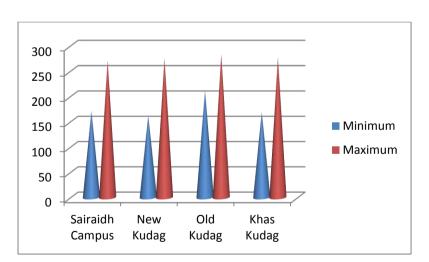
Table 4.0

Measurement Techniques for various pollutants

S.No.	Parameter	Technique	Technical Protocol	Minimum Reportable Value (µg/m³)
1.	Suspended	Respirable Dust Sampler	IS-5182	5
<u> </u>			(Part – 23)	5
2.	Respirable	Respirable Dust Sampler	IS-5182	5
Ζ.	Particulate Matter	(Gravimetric Method)	(Part-23)	5
2	Particulate Matter	Respirable Dust Sampler	Gravimetric	5
3.	2.5	(Gravimetric Method)	Method	5
1	Sulphur Dioxide	Modified West and	IS-5182	4
4.		Gaeke		4
5.	Ovida of Nitragon	Jacob & Hochheiser	IS-5182	4
5.	Oxide of Nitrogen	Method	(Part – VI)	4
6.	Pb, As,Hg, Cr	Acid Digestion Method	EPA Method	0.1
-	Manager (11a)	By Cold Vapor atomic	IS-5182	0.001
7.	Mercury (Hg)	Absorption	(Part-I)	0.001
8.	Dust Full	Gravimetric	IS-5182	
0.		Gravinicale	(Part-I)	—

Details of Salient Features

1.6 Fugitive Emission Monitoring (Core Zone)

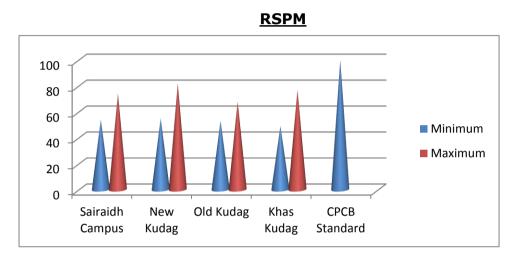

The summary of Fugitive Emission monitoring results for the month of January-February-March-2018 are presented in detail in **Table 6.0**. 98th percentile; maximum and minimum values etc. have been computed from the collected raw data for all the Fugitive monitoring station. The data has been compared with the standards prescribed by Central Pollution Control Board (CPCB)/NAAQS for residential and rural zone.

1.6.1 Presentation of Results.

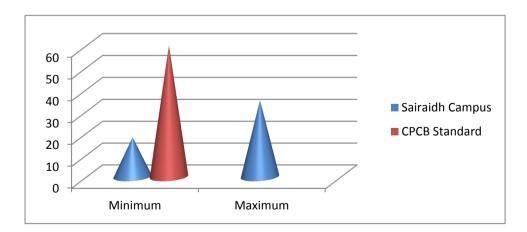
Suspended Particulate Matter-SPM

The minimum and maximum concentrations for Suspended Particulate Matter-SPM were recorded as $169\mu g/m^3$ and $290\mu g/m^3$ respectively. The average concentrations were ranged between 206 to $270\mu g/m^3$, and 98^{th} percentile values ranged between 230 to $289\mu g/m^3$ in the study area **(Table 6)**.

Graphical Presentation of Fugitive Emission Monitoring

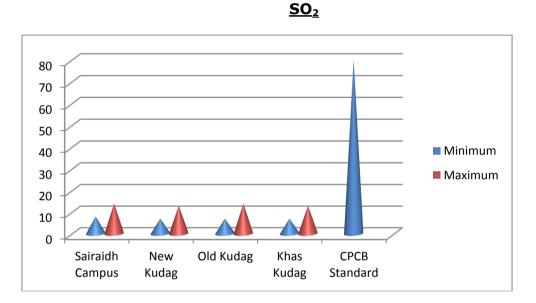

<u>SPM</u>

Respirable Suspended Particulate Matter – RSPM

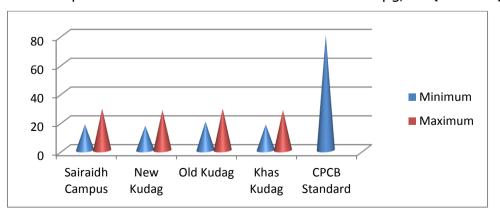

The minimum and maximum concentrations for RSPM were recorded as $52\mu g/m^3$ and $74\mu g/m^3$ respectively. The average values were observed to be in the range of 61to $69\mu g/m^3$ and 98^{th} percentile values ranged between 63 to $74\mu g/m^3$ in the study area **(Table 7)**.

Graphical Presentation of Fugitive Emission Monitoring

Particulate Matter -PM_{2.5}


The minimum and maximum values of $PM_{2.5}$ concentrations varied between 19 to $31\mu g/m^3$ respectively. The average values range between 23 to $28\mu g/m^3$ and 98^{th} percentile values varied between 27 to $31\mu g/m^3$ **(Table 8)**.

Sulphur Dioxide (SO₂)


The minimum and maximum SO_2 concentrations were recorded as $9\mu g/m^3$ and $16\mu g/m^3$ respectively. The average values were observed to be in the range of 10 to $14\mu g/m^3$ and 98th percentile values varied between 13 to $16\mu g/m^3$ (Table 9).

Graphical Presentation Of Fugitive Emission Monitoring

Nitrogen Oxide (NO_x)

The minimum and maximum NO_x concentrations were recorded as $19\mu g/m^3$ and $33\mu g/m^3$. The average concentrations were ranged between 24 to $28\mu g/m^3$ and 98^{th} percentile values varied between 27 to $33\mu g/m^3$ (Table 10).

Lead (Pb)

The minimum and maximum Lead detected between 0.024 to 0.057μ g/m³ respectively. The average Lead detected between 0.031 to 0.050μ g/m³ & 98th percentile values varied between 0.038 to 0.057μ g/m³ in the study region **(Table 11).**

Mercury (Hg)

Mercury was not detected at any of the locations in SPM samples as well as RSPM Samples **(Table 12).**

Arsenic (As)

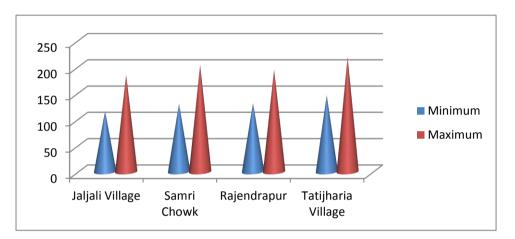
Arsenic was not detected at any of the locations in SPM samples as well as RSPM Samples (**Table 13**).

Chromium (Cr)

Chromium was not detected at any of the locations in SPM samples as well as RSPM Samples.

1.7 Ambient Air Quality (Buffer Zone)

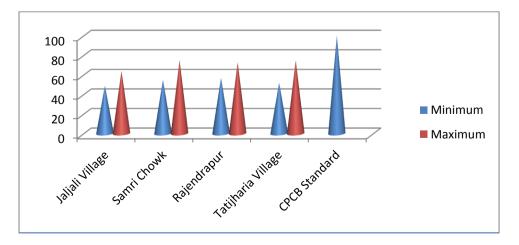
The background levels of SPM, RSPM (PM_{10}), $PM_{2.5}$, SO₂, NOx, Pb, Hg, As, Cr and Dust fall are required to compute Buffer Zone. The sampling locations are selected at the above mentioned locations in downwind and upwind directions of the mine. The Minimum, Maximum concentration, Arithmetic mean (AM), Geometric mean (GM), and 98 Percentile are presented in tabular form (**Table 6**).


1.7.1 Presentation of Results.

The summary of Ambient Air Quality monitoring results for the month of January-February-March-2018 are presented in detail in **Table 6**. 98th percentile; maximum and minimum values etc. have been computed from the collected raw data for all the AAQ monitoring station. The data has been compared with the standards prescribed by Central Pollution Control Board (CPCB)/NAAQS for residential and rural zone.

Suspended Particulate Matter-SPM

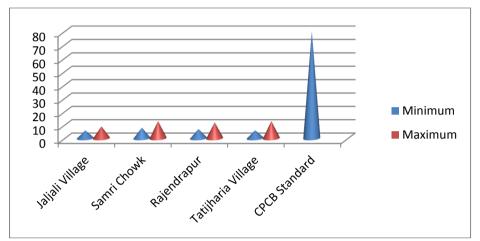
The statistical analysis of SPM is presented in **Table 6** for the Buffer Zone area. The minimum and maximum values varied between 120 to $225\mu g/m^3$ respectively during study period at all the 4 locations. The average values ranged between 144 to $194\mu g/m^3$ and 98^{th} percentile values ranged between 167 to $224\mu g/m^3$ in the study area.



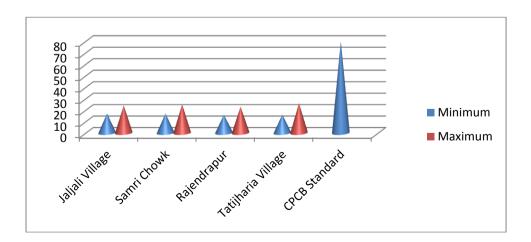
Graphical Presentation of Ambient Air Quality (Buffer Zone)

Particulate Matter-RSPM

The minimum and maximum values of RSPM varied between 48 to $68\mu g/m^3$ respectively **(Table 7)**. The average values varied between 52 to $65\mu g/m^3$. The 98th percentile values varied between 54 to $68\mu g/m^3$ in the mining area. The overall values of SPM and RSPM were well within the CPCB limits prescribe for industrial and residential area in the study area during the study period.



Sulphur Dioxide (SO₂)


The minimum and maximum values of SO_2 concentrations varied between 7 to $14\mu g/m^3$ respectively. The average values range between 8 to 12 $\mu g/m^3$ and 98th percentile values varied between 9to $14\mu g/m^3$ (Table 9).

Nitrogen Oxide (NO_x)

The minimum and maximum values of NOx concentrations varied between 14 to $24\mu g/m^3$ respectively. The average values range between 16 to $21\mu g/m^3$ and 98th percentile values varied between 17 to $26\mu g/m^3$ (Table 10).

Graphical Presentation Of Ambient Air Quality (Buffer Zone) NO_x

Lead (Pb)

Lead was not detected at any of the locations in SPM samples as well as RSPM Samples (Table 11).

Mercury (Hg)

Mercury was not detected at any of the locations in SPM samples as well as RSPM Samples (Table 12).

Arsenic (As)

Arsenic was not detected at any of the locations in SPM samples as well as RSPM Samples (Table 13).

Chromium (Cr)

Chromium was not detected at any of the locations in SPM samples as well as RSPM Samples.

The dust fall rate was measured by exposing a jar during January-February-March-2018 in Old Kudag/Mining Area and Khas Kudag village. The dust fall rate was observed to be 22.1 and 21.6MT/km²/month respectively as given in **(Table 14)**.

Overall the ambient air concentrations of SPM, RSPM, SO_2 , NOx, Pb, As, Cr and Hg were well within the limits of concentrations promulgated by CPCB, New Delhi in the study area.

1.8 Meteorology: Wind Pattern

The data of wind pattern collected during the study period (Jan-Feb-March-2018) indicates that the wind was blowing predominantly from (ENE and NNE) directions, during study period, for 2.08% wind was found to be calm. The details of wind pattern in the form of wind frequency distribution are presented in table-1. The graphical illustration and wind rose diagram is presented in Figures-1 & 2 respectively.

Table.1

Directions / Wind 8.8 -Sr.No. 0.5 - 2.1 2.1 - 3.6 3.6 - 5.7 >= 11.1 Total 5.7 - 8.8 Classes (m/s) 11.1 0.002782 0.002782 0.001391 0.000000 0.000000 0.000000 0.006954 1 348.75 - 11.25 0.055633 0.006954 0.000000 0.000000 0.000000 0.030598 0.093185 2 11.25 - 33.75 0.066759 0.034771 0.000000 0.000000 0.000000 0.000000 3 33.75 - 56.25 0.101530 0.108484 0.019471 0.000000 0.000000 0.000000 0.000000 4 56.25 - 78.75 0.127955 0.034771 0.008345 0.000000 0.000000 0.000000 0.000000 5 78.75 - 101.25 0.043115 0.037552 0.000000 0.013908 0.000000 0.000000 0.000000 6 101.25 - 123.75 0.051460 7 123.75 - 146.25 0.036161 0.020862 0.001391 0.000000 0.000000 0.000000 0.058414 8 146.25 - 168.75 0.029207 0.008345 0.001391 0.000000 0.000000 0.000000 0.038943 9 0.012517 0.015299 0.001391 0.000000 0.000000 0.000000 0.029207 168.75 - 191.25 0.013908 10 191.25 - 213.75 0.020862 0.002782 0.002782 0.000000 0.000000 0.040334 11 213.75 - 236.25 0.015299 0.040334 0.018081 0.001391 0.000000 0.000000 0.075104 12 0.025035 0.026426 0.011127 0.000000 0.000000 0.000000 236.25 - 258.75 0.062587 0.015299 0.000000 0.000000 13 258.75 - 281.25 0.006954 0.004172 0.002782 0.029207 0.036161 0.002782 14 0.005563 0.016690 0.000000 0.000000 281.25 - 303.75 0.061196 0.000000 15 303.75 - 326.25 0.005563 0.029207 0.048679 0.001391 0.000000 0.084840 0.000000 0.000000 16 326.25 - 348.75 0.008345 0.027816 0.027816 0.011127 0.075104 0.000000 Sub-Total 0.446453 0.349096 0.161335 0.022253 0.000000 0.977778 Calms 0.020833 Missing/Incomplete 0.001389 1.000000 Total

Wind Frequency Distribution Data

SUMMARY OF WIND PATTERN

Season	First Predominant	Second Predominant	Calm
	Wind Direction	Wind Direction	Condition
Jan-Feb-March-2018	ENE (12.79%)	NNE (10.15%)	2.08 %

Hindalco Industries Limited Kudag Mining Environmental Status Report for January-2018 To March-2018

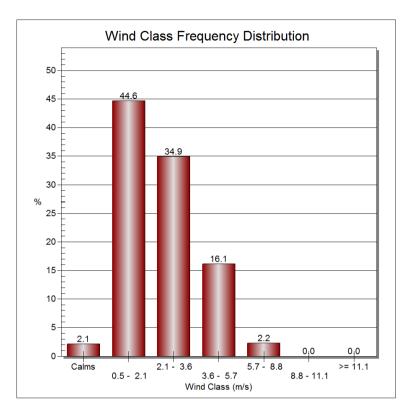


Figure.01: Wind Class Frequency Distribution (Jan-Feb-March-2018).

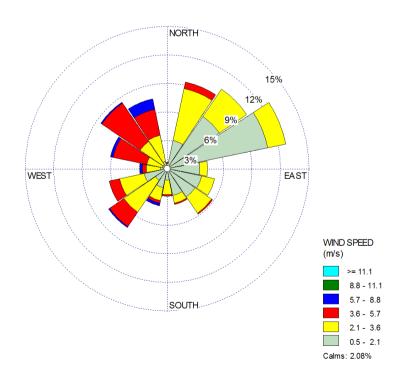


Figure.02: Wind Rose Diagram (Jan-Feb-March-2018)

1.9 Noise Environment

The Director General of Mines Safety in its circular No. DG (Tech)/18 of 1975, has prescribed the noise level in mining occupations (TLV) for workers, in an 8 hour shift period with unprotected ear as 90 dB(A) or less. There will be some noise sources in mines, which produce noise levels above 90 dB(A), however; the workers are not expected to be exposed continuously for 8 hours. In order to maintain this statutory requirement noise monitoring has been carried out in and around the mining lease area.

Work zone noise level in the mining area shall increase due to blasting excavation and transportation. The impacts due to the mining activities on the noise levels shall be negligible, if all the precautions for the elimination of the noise are taken. The mining activities will be undertaken during daytime only. The daytime equivalent noise levels, when all the machineries are in operation, shall be minimized as the machineries have been provided with control equipment. Noise monitoring carried out on monthly basis at mining site; Core Zone and Buffer Zone are as shown in **Fig. 3**.

Identification of sampling locations

Noise at different noise generating sources has been identified based on the activities in the village area and ambient noise due to traffic.

The noise monitoring has been conducted for determination of ambient noise levels in the mining area and villages. The noise levels at each location were recorded for 24 hours.

Instrument used for monitoring

Noise levels were measured using integrated sound level meter manufactured by Envirotech made in India (Model no. SLM-100). This instrument is capable of measuring the Sound Pressure Level (SPL), Leq.

Method of Monitoring

Sound Pressure Level (SPL) measurements were monitored at eight locations. The readings were taken for every hour for 24 hours. The day noise levels have been monitored during 6 am to 10 pm and night levels during 10 pm to 6 am at eight locations within 10-km radius of the study area.

Noise level monitoring was carried out continuously for 24 hours with one hour interval starting at 06.00 hrs to 06.00 hrs next day.

Noise levels monitored during day and night at eight locations are found to be below in the Mining Area than the stipulated standard of CPCB for Industrial area as 75dB(A) and 70dB(A) for day and night respectively as given in **(Table15)**.

2.0 Water Quality Monitoring

The existing status of water quality for ground water and surface water was assessed by collecting the water samples from underground wells from the mining area/old kudag.

The purpose of the study is to assess the water quality characteristics for critical parameters, evaluate the impacts on agricultural productivity, habitat conditions, recreational resources and aesthetics in the vicinity and identification of impact on water quality by this project and related activities.

The physico-chemical analysis of water samples collected during the study period is given in **(Table16 and Fig.5)**. The overall water quality found to be below the stipulated standards of IS 10500-2012 for ground water & found to be fit for drinking purpose for tested parameters. Thus the impacts due to mining activities have been found to be insignificant.

The drinking water is supplied by the tankers from for away sources. Hence, additional care now be taken to chlorinate the tankers before leaving the supply source.

The water sample from Nallahs near Mines Area was collected to know its chemical characteristics in order to find out the use of water for various utilities in the mine area As per IS : 10500:2012 for surface water results are within the permissible limit so that the water can be used after chlorination.

The drinking water is supplied by the tankers from far away sources. Hence, additional care now be taken to chlorinate the tankers before leaving the supply source.

2

....

Table 6 Statistical Analysis of SPM

		1	1	1	Unit:	µg/m³
Location	Month & Year	Min.	Max.	A.M.	G.M.	98%le
Fugitive Emission (Core Zo	ne):-		•			
	January-2018	178	235	207	207	234
Sairaidh Campus	February-2018	216	278	247	247	277
-	March-2018	206	230	218	218	230
New Kudag/Nr. Weigh	January-2018	185	241	213	213	240
Bridge	February-2018	209	282	246	246	281
	March-2018	169	251	210	210	249
	January-2018	222	283	253	253	282
Old Kudag/Mining Area	February-2018	249	290	270	270	289
	March-2018	219	258	239	239	257
	January-2018	176	236	206	206	235
Khas Kudag	February-2018	220	284	252	252	283
	March-2018	190	255	223	223	254
CPCB Stand	ard					

Location	Month & Year	Min.	Max.	A.M.	G.M.	98%le
Buffer Zone :-						
	January-2018	120	168	144	144	167
Jaljali Village	February-2018	142	191	167	167	190
	March-2018	131	174	153	153	173
	January-2018	134	183	159	159	182
Samri Chowk/ Nr.Old Weigh Bridge	February-2018	165	210	188	188	209
NI.Old Weigh Bridge	March-2018	144	199	172	172	198
	January-2018	135	201	168	168	200
Rajendrapur	February-2018	147	190	169	169	189
	March-2018	154	196	175	175	195
	January-2018	150	214	182	182	213
Tatijharia Village	February-2018	162	225	194	194	224
	March-2018	152	209	181	181	208
CPCB Standard	· · ·				•	•

Conclusion-A:-

1) Sairaidh Campus Lease Area Core Zone :- For the Months of Jan-Feb-March-2018 Avg. of SPM is 224 µg/m³.

2) New Kudag/Nr.Weigh Bridge Lease Area Core Zone:- For the Months of Jan-Feb-Mar-2018 Avg. of SPM is 223µg/m3.

3) Old Kudag/Mining Lease Area Core Zone: - For the Months of Jan-Feb-Mar-2018 Avg. of SPM is 254µg/m³.

4) Khas Kudag Lease Area Core Zone: - For the Months of Jan-Feb-Mar-2018 Avg. of SPM is 227µg/m³.

The Average Concentration of SPM within the core zone of Kudag Lease is 232µg/m³.

Conclusion-B:-

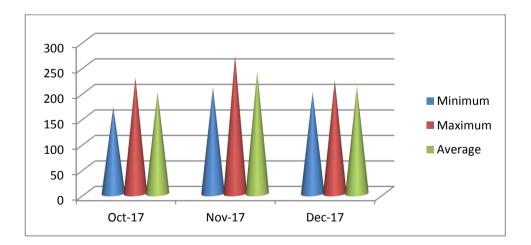
1)Jaljali Village Lease Area Buffer Zone :- For the Months of Jan-Feb-Mar-2018 Avg. of SPM is 155 μg/m³.
2)Samri Chowk Lease Area Buffer Zone :- For the Months of Jan-Feb-Mar-2018 Avg. of SPM is 173 μg/m³.
3)Rajendrapur Lease Area Buffer Zone :- For the Months of Jan-Feb-Mar-2018 Avg. of SPM is 171 μg/m³.
4) Tatijharia Lease Area Buffer Zone :- For the Months of Jan-Feb-Mar-2018 Avg. of SPM is 171 μg/m³.

• The Average Concentration of SPM within the Buffer Zone of Kudag Lease is 171 µg/m³

Month wise Summary of Statistical Analysis of SPM

2.1 Fugitive Emission (Core Zone):-

2.1.1 Presentation of Results.


The summary of Statistical Analysis of SPM results for the month of January-2018 to March-2018 are presented in detail in **Table 6**. 98th percentile; maximum, minimum and average values etc. have been computed from the collected raw data for all the Fugitive emission monitoring station.

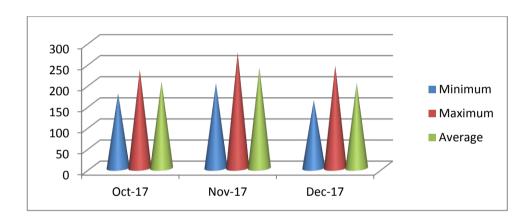
Sairaidh Campus

For the month of January-2018 the minimum and maximum concentrations for SPM were recorded as $178\mu g/m^3$ and $235\mu g/m^3$ respectively and average concentration of $207\mu g/m^3$.

For the month of February-2018 the minimum and maximum concentrations for SPM were recorded as $216\mu g/m^3$ and $278\mu g/m^3$ respectively and average concentration of $247\mu g/m^3$.

For the month of March-2018 the minimum and maximum concentrations for SPM were recorded as $206\mu g/m^3$ and $230\mu g/m^3$ respectively and average concentration of $218\mu g/m^3$.

Graph :- Sairaidh Campus



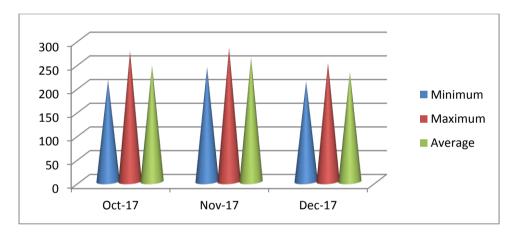
New Kudag/Nr.Weigh Bridge

For the month of January-2018 the minimum and maximum concentrations for SPM were recorded as $185\mu g/m^3$ and $241\mu g/m^3$ respectively and average concentration of $213\mu g/m^3$.

For the month of February-2018 the minimum and maximum concentrations for SPM were recorded as $209\mu g/m^3$ and $282\mu g/m^3$ respectively and average concentration of $246\mu g/m^3$.

For the month of March-2018 the minimum and maximum concentrations for SPM were recorded as $169\mu g/m^3$ and $251\mu g/m^3$ respectively and average concentration of $210\mu g/m^3$.

Graph: - New Kudag/Nr.Weigh Bridge



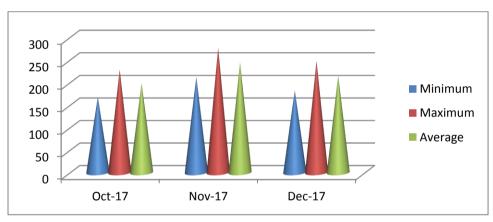
Old Kudag/Mining Area

For the month of January-2018 the minimum and maximum concentrations for SPM were recorded as $222\mu g/m^3$ and $283\mu g/m^3$ respectively and average concentration of $253\mu g/m^3$.

For the month of February-2018 the minimum and maximum concentrations for SPM were recorded as $249\mu g/m^3$ and $290\mu g/m^3$ respectively and average concentration of $270\mu g/m^3$.

For the month of March-2018 the minimum and maximum concentrations for SPM were recorded as $219\mu g/m^3$ and $258\mu g/m^3$ respectively and average concentration of $239\mu g/m^3$.

Graph: - Old Kudag/Mining Area



<u>Khas Kudag</u>

For the month of January-2018 the minimum and maximum concentrations for SPM were recorded as $176\mu g/m^3$ and $236\mu g/m^3$ respectively and average concentration of $206\mu g/m^3$.

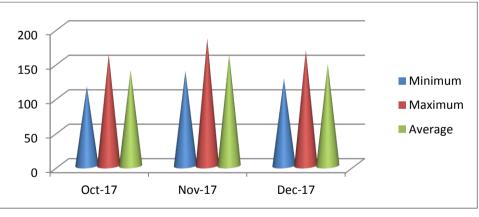
For the month of February-2018 the minimum and maximum concentrations for SPM were recorded as $220\mu g/m^3$ and $284\mu g/m^3$ respectively and average concentration of $252\mu g/m^3$.

For the month of March-2018 the minimum and maximum concentrations for SPM were recorded as $190\mu g/m^3$ and $255\mu g/m^3$ respectively and average concentration of $223\mu g/m^3$.

Graph: - Khas Kudag

2.2 Fugitive Emission (Buffer Zone):-

2.2.1 Presentation of Results.


The summary of Statistical Analysis of SPM results for the month of January-2018 to March-2018 are presented in detail in **Table 6**. 98th percentile; maximum, minimum and average values etc. have been computed from the collected raw data for all the Fugitive emission monitoring station.

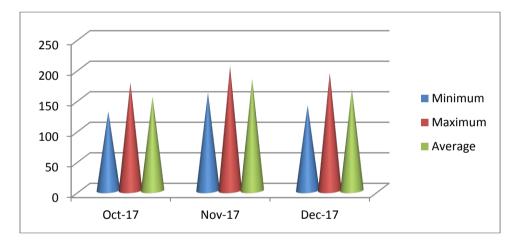
Jaljali Village

For the month of January-2018 the minimum and maximum concentrations for SPM were recorded as $120\mu g/m^3$ and $168\mu g/m^3$ respectively and average concentration of $144\mu g/m^3$.

For the month of February-2018 the minimum and maximum concentrations for SPM were recorded as $142\mu g/m^3$ and $191\mu g/m^3$ respectively and average concentration of $167\mu g/m^3$.

For the month of March-2018 the minimum and maximum concentrations for SPM were recorded as $131\mu g/m^3$ and $174\mu g/m^3$ respectively and average concentration of $153\mu g/m^3$.

Graph: - Jaljali Village



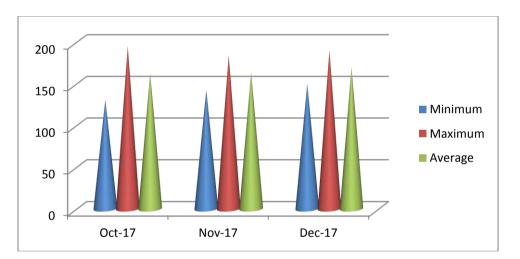
Samri Chowk/Nr.Old Weigh Bridge

For the month of January-2018 the minimum and maximum concentrations for SPM were recorded as $134\mu g/m^3$ and $183\mu g/m^3$ respectively and average concentration of $159\mu g/m^3$.

For the month of February-2018 the minimum and maximum concentrations for SPM were recorded as $165\mu g/m^3$ and $210\mu g/m^3$ respectively and average concentration of $188\mu g/m^3$.

For the month of March-2018 the minimum and maximum concentrations for SPM were recorded as $144\mu g/m^3$ and $199\mu g/m^3$ respectively and average concentration of $172\mu g/m^3$.

Graph:- Samri Chowk/Nr.Old Weigh Bridge



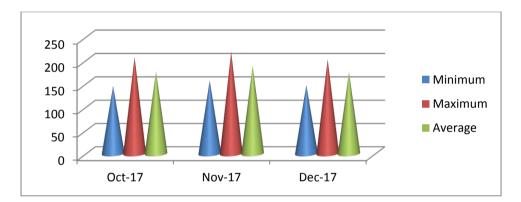
<u>Rajendrapur</u>

For the month of January-2018 the minimum and maximum concentrations for SPM were recorded as $135\mu g/m^3$ and $201\mu g/m^3$ respectively and average concentration of $168\mu g/m^3$.

For the month of February-2018 the minimum and maximum concentrations for SPM were recorded as $147\mu g/m^3$ and $190\mu g/m^3$ respectively and average concentration of $169\mu g/m^3$.

For the month of March-2018 the minimum and maximum concentrations for SPM were recorded as $154\mu g/m^3$ and $196\mu g/m^3$ respectively and average concentration of $175\mu g/m^3$.

Graph:- Rajendrapur



Tatijharia Village

For the month of January-2018 the minimum and maximum concentrations for SPM were recorded as $150\mu g/m^3$ and $214\mu g/m^3$ respectively and average concentration of $182\mu g/m^3$.

For the month of February-2018 the minimum and maximum concentrations for SPM were recorded as $162\mu g/m^3$ and $225\mu g/m^3$ respectively and average concentration of $194\mu g/m^3$.

For the month of March-2018 the minimum and maximum concentrations for SPM were recorded as $152\mu g/m^3$ and $209\mu g/m^3$ respectively and average concentration of $181\mu g/m^3$.

Graph: - Tatijharia Village

2

-- --

<u>Table 7</u>

Statistical Analysis of RSPM

					Unit: J	Jg/m³
Location	Month & Year	Min.	Max.	A.M.	G.M.	98%le
Fugitive Emission (Core	e Zone):-					
	January-2018	57	64	61	61	64
Sairaidh Campus	February-2018	64	72	68	68	72
	March-2018	61	69	65	65	69
New Kudag/Nr. Weigh	January-2018	62	74	68	68	74
Bridge	February-2018	65	72	69	69	72
	March-2018	58	67	63	63	67
	January-2018	56	66	61	61	66
Old Kudag/Mining Area	February-2018	61	72	67	67	72
	March-2018	63	71	67	67	71
	January-2018	52	74	63	63	74
Khas Kudag	February-2018	59	63	61	61	63
	March-2018	61	68	65	65	68
CPCB Stan	dard		100	µg/m³ (24 hrs)	

Location	Month & Year	Min.	Max.	A.M.	G.M.	98%le
Buffer Zone :-						
	January-2018	48	57	53	53	57
Jaljali Village	February-2018	53	62	58	58	62
	March-2018	50	54	52	52	54
	January-2018	57	64	61	61	64
Samri Chowk/ Nr.Old Weigh Bridge	February-2018	61	68	65	65	68
NI.Old Weigh Bridge	March-2018	54	63	59	59	63
	January-2018	56	61	59	59	61
Rajendrapur	February-2018	62	68	65	65	68
	March-2018	57	63	60	60	63
	January-2018	51	58	55	55	58
Tatijharia Village	February-2018	53	61	57	57	61
	March-2018	60	67	64	64	67
CPCB Standard			100	µg/m³ (24 hrs)	

Conclusion-A:-

1) <u>Sairaidh Campus Lease Area Core Zone</u> :- For the Months of Jan-Feb-Mar-2018 Avg. of RSPM is 65µg/m³.

2) New Kudag/Nr.Weigh Bridge Lease Area Core Zone:- For the Months of Jan-Feb-Mar-2018 Avg. of RSPM is 67µg/m3.

3) Old Kudag/Mining Lease Area Core Zone: - For the Months of Jan-Feb-Mar-2018 Avg. of RSPM is 65µg/m³.

4) Khas Kudag Lease Area Core Zone: - For the Months of Jan-Feb-Mar-2018 Avg. of RSPM is 63µg/m³.

• The Average Concentration of RSPM within the core zone of Kudag Lease is 65µg/m³ and it is within permissible limits as per CPCB Standard.

Conclusion-B:-

1) Jaljali Village Lease Area Buffer Zone :- For the Months of Jan-Feb-Mar-2018 Avg. of RSPM is 54µg/m³.

2) Samri Chowk<u>Lease Area Buffer Zone</u>:- For the Months of Jan-Feb-Mar-2018 Avg. of RSPM is 62µg/m³.

3) Rajendrapur Lease Area Buffer Zone: - For the Months of Jan-Feb-Mar-2018 Avg. of RSPM is 61µg/m³.

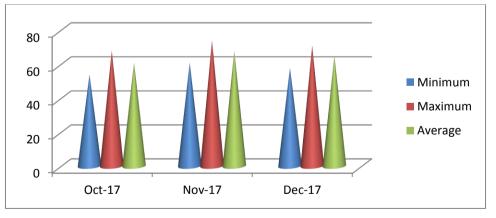
4) Tatijharia Village Lease Area Buffer Zone: - For the Months of Jan-Feb-Mar-2018 Avg. of RSPM is 59μg/m³.
The Average Concentration of RSPM within the Buffer Zone of Kudag Lease is 59μg/m³ and it is within

permissible limits as per CPCB Standard.

Month wise Summary of Statistical Analysis of RSPM

2.3 Fugitive Emission (Core Zone):-

2.3.1 <u>Presentation of Results.</u>


The summary of Statistical Analysis of RSPM results for the month of January-2018 to March-2018 are presented in detail in **Table 7**. 98th percentile; maximum, minimum and average values etc. have been computed from the collected raw data for all the Fugitive emission monitoring station.

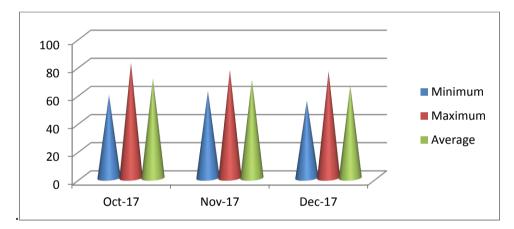
Sairaidh Campus

For the month of January-2018 the minimum and maximum concentrations for RSPM were recorded as $57\mu g/m^3$ and $64\mu g/m^3$ respectively and average concentration of $61\mu g/m^3$.

For the month of February-2018 the minimum and maximum concentrations for RSPM were recorded as $64\mu g/m^3$ and $72\mu g/m^3$ respectively and average concentration of $68\mu g/m^3$.

For the month of March-2018 the minimum and maximum concentrations for RSPM were recorded as $61\mu g/m^3$ and $69\mu g/m^3$ respectively and average concentration of $65\mu g/m^3$.

Graph :- Sairaidh Campus



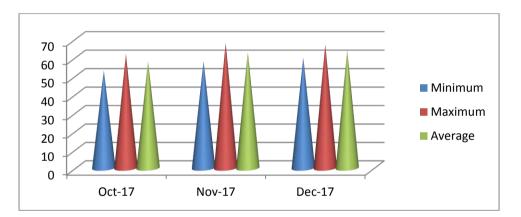
New Kudag/Nr.Weigh Bridge

For the month of January-2018 the minimum and maximum concentrations for RSPM were recorded as $62\mu g/m^3$ and $74\mu g/m^3$ respectively and average concentration of $68\mu g/m^3$.

For the month of February-2018 the minimum and maximum concentrations for RSPM were recorded as $65\mu g/m^3$ and $72\mu g/m^3$ respectively and average concentration of $69\mu g/m^3$.

For the month of March-2018 the minimum and maximum concentrations for RSPM were recorded as $58\mu g/m^3$ and $67\mu g/m^3$ respectively and average concentration of $63\mu g/m^3$.

Graph: - <u>New Kudag/Nr.Weigh Bridge</u>



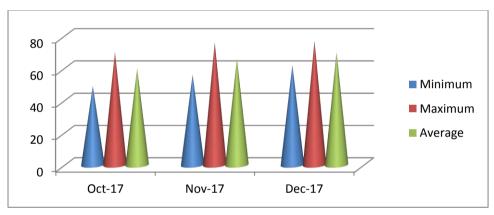
Old Kudag/Mining Area

For the month of October-2017 the minimum and maximum concentrations for RSPM were recorded as $56\mu g/m^3$ and $66\mu g/m^3$ respectively and average concentration of $61\mu g/m^3$.

For the month of November-2017 the minimum and maximum concentrations for RSPM were recorded as $61\mu g/m^3$ and $72\mu g/m^3$ respectively and average concentration of $67\mu g/m^3$.

For the month of December-2017 the minimum and maximum concentrations for RSPM were recorded as $63\mu g/m^3$ and $71\mu g/m^3$ respectively and average concentration of $67\mu g/m^3$.

Graph: - Old Kudag/Mining Area



<u>Khas Kudag</u>

For the month of January-2018 the minimum and maximum concentrations for RSPM were recorded as $52\mu g/m^3$ and $74\mu g/m^3$ respectively and average concentration of $63\mu g/m^3$.

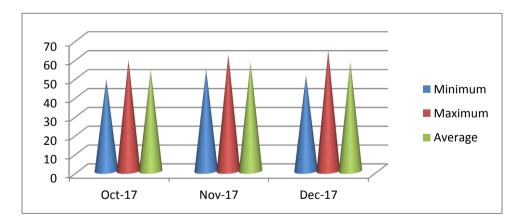
For the month of February-2018 the minimum and maximum concentrations for RSPM were recorded as $59\mu g/m^3$ and $63\mu g/m^3$ respectively and average concentration of $61\mu g/m^3$.

For the month of March-2018 the minimum and maximum concentrations for RSPM were recorded as $61\mu g/m^3$ and $68\mu g/m^3$ respectively and average concentration of $65\mu g/m^3$.

Graph: - Khas Kudag

2.4 Fugitive Emission (Buffer Zone):-

2.4.1 Presentation of Results.


The summary of Statistical Analysis of RSPM results for the month of January-2018 to March-2018 are presented in detail in **Table 7**. 98th percentile; maximum, minimum and average values etc. have been computed from the collected raw data for all the Fugitive emission monitoring station.

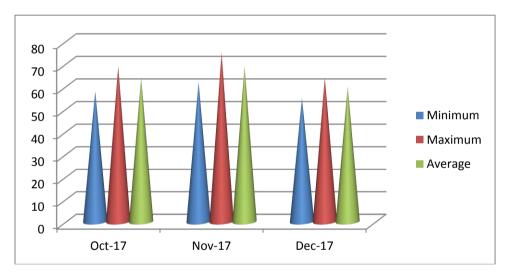
Jaljali Village

For the month of January-2018 the minimum and maximum concentrations for RSPM were recorded as $48\mu g/m^3$ and $57\mu g/m^3$ respectively and average concentration of $53\mu g/m^3$.

For the month of February-2018 the minimum and maximum concentrations for RSPM were recorded as $53\mu g/m^3$ and $62\mu g/m^3$ respectively and average concentration of $58\mu g/m^3$.

For the month of March-2018 the minimum and maximum concentrations for RSPM were recorded as $50\mu g/m^3$ and $54\mu g/m^3$ respectively and average concentration of $52\mu g/m^3$.

Graph: - Jaljali Village

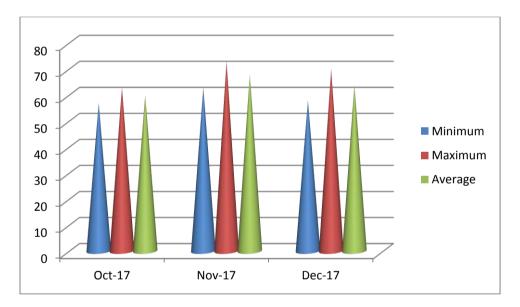


Samri Chowk/Nr.Old Weigh Bridge

For the month of January-2018 the minimum and maximum concentrations for RSPM were recorded as $57\mu g/m^3$ and $64\mu g/m^3$ respectively and average concentration of $61\mu g/m^3$.

For the month of February-2018 the minimum and maximum concentrations for RSPM were recorded as $61\mu g/m^3$ and $68\mu g/m^3$ respectively and average concentration of $65\mu g/m^3$.

For the month of March-2018 the minimum and maximum concentrations for RSPM were recorded as $54\mu g/m^3$ and $63\mu g/m^3$ respectively and average concentration of $59\mu g/m^3$.



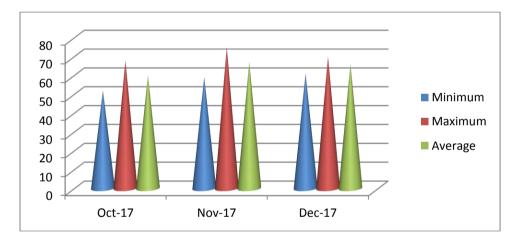
<u>Rajendrapur</u>

For the month of January-2018 the minimum and maximum concentrations for RSPM were recorded as $56\mu g/m^3$ and $61\mu g/m^3$ respectively and average concentration of $59\mu g/m^3$.

For the month of February-2018 the minimum and maximum concentrations for RSPM were recorded as $62\mu g/m^3$ and $68\mu g/m^3$ respectively and average concentration of $65\mu g/m^3$.

For the month of March-2018 the minimum and maximum concentrations for RSPM were recorded as $57\mu g/m^3$ and $63\mu g/m^3$ respectively and average concentration of $60\mu g/m^3$.

Graph:- Rajendrapur



Tatijharia Village

For the month of January-2018 the minimum and maximum concentrations for RSPM were recorded as $51\mu g/m^3$ and $58\mu g/m^3$ respectively and average concentration of $55\mu g/m^3$.

For the month of February-2018 the minimum and maximum concentrations for RSPM were recorded as $53\mu g/m^3$ and $61\mu g/m^3$ respectively and average concentration of $57\mu g/m^3$.

For the month of March-2018 the minimum and maximum concentrations for RSPM were recorded as $60\mu g/m^3$ and $67\mu g/m^3$ respectively and average concentration of $64\mu g/m^3$.

Graph:- Tatijharia Village

<u>Table 8</u> <u>Statistical Analysis of PM_{2.5}</u>

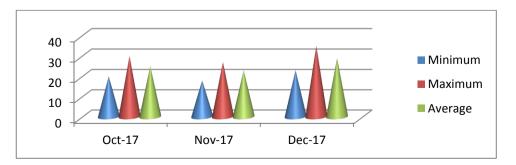
					Unit:	µg/m³
Location	Month & Year	Min.	Max.	A.M.	G.M.	98%
Sairaidh Campus	January-2018	21	28	25	25	28
	February-2018	24	31	28	28	31
	March-2018	19	27	23	23	27
CPCB Standard				60 µg (24 h		

Conclusion :-

The Average Concentration of $PM_{2.5}$ within Kudag Lease during this period (Jan-Feb-Mar-2018) is 25µg/m³ and it is within permissible limits as per CPCB Standard.

Monthwise Summary of Statistical Analysis of PM_{2.5}

2.5 Presentation of Results.


The summary of Statistical Analysis of $PM_{2.5}$ results for the month of January-2018 to March-2018 are presented in detail in **Table 8**. 98th percentile; maximum, minimum and average values etc. have been computed from the collected raw data for all the Fugitive emission monitoring station.

Sairaidh Campus

For the month of January-2018 the minimum and maximum concentrations for $PM_{2.5}$ were recorded as $21\mu g/m^3$ and $28\mu g/m^3$ respectively and average concentration of $25\mu g/m^3$.

For the month of February-2018 the minimum and maximum concentrations for $PM_{2.5}$ were recorded as $24\mu g/m^3$ and $31\mu g/m^3$ respectively and average concentration of $28\mu g/m^3$.

For the month of March-2018 the minimum and maximum concentrations for $PM_{2.5}$ were recorded as $19\mu g/m^3$ and $27\mu g/m^3$ respectively and average concentration of $23\mu g/m^3$.

.. ..

<u>Table 9</u> Statistical analysis of SO₂

					Unit: µ	g/m³
Location	Month & Year	Min.	Max.	A.M.	G.M.	98%
Fugitive Emission (Core 2	lone):-					
	January-2018	10	15	13	13	15
Sairaidh Campus	February-2018	11	16	14	14	16
·	March-2018	10	15	13	13	15
New Kudag/Nr. Weigh	January-2018	11	13	12	12	13
Bridge	February-2018	9	11	10	10	11
	March-2018	11	15	13	13	15
	January-2018	9	13	11	11	13
Old Kudag/Mining Area	February-2018	11	16	14	14	16
	March-2018	9	14	12	12	14
	January-2018	11	15	13	13	15
Khas Kudag	February-2018	9	13	11	11	13
	March-2018	11	15	13	13	15
CPCB Standard				80 µg/m (24 hrs)		

Location	Month & Year	Min.	Max.	A.M.	G.M.	98%
Buffer Zone :-						
	January-2018	8	10	9	9	10
Jaljali Village	February-2018	7	9	8	8	9
	March-2018	8	10	9	9	10
	January-2018	9	13	11	11	13
Samri Chowk/	February-2018	10	14	12	12	14
Nr.Old Weigh Bridge	March-2018	9	12	11	11	12
	January-2018	8	10	9	9	10
Rajendrapur	February-2018	9	13	11	11	13
	March-2018	8	10	9	9	10
	January-2018	9	14	12	12	14
Tatijharia Village	February-2018	7	10	9	9	10
	March-2018	9	12	11	11	12
CPCB Standard				80 µg/r (24 hrs		

Conclusion-A:-

1) <u>Sairaidh Campus Lease Area Core Zone</u> :- For the Months of Jan-Feb-Mar-2018 Avg. of SO₂ is 13µg/m³.

2) New Kudag/Nr.Weigh Bridge Lease Area Core Zone:- For the Months of Jan-Feb-Mar-2018 Avg. of SO₂ is 12µg/m3.

3) Old Kudag/Mining Lease Area Core Zone: - For the Months of Jan-Feb-Mar-2018 Avg. of SO₂ is 12µg/m³.

4) Khas Kudag Lease Area Core Zone: - For the Months of Jan-Feb-Mar-2018 Avg. of SO₂ is 12µg/m³.

• The Average Concentration of SO_2 within the core zone of Kudag Lease is $12\mu g/m^3$ and it is within permissible limits as per CPCB Standard.

Conclusion-B:-

1) Jaljali Village Lease Area Buffer Zone :- For the Months of Jan-Feb-Mar-2018 Avg. of SO₂ is 9.0 µg/m³.

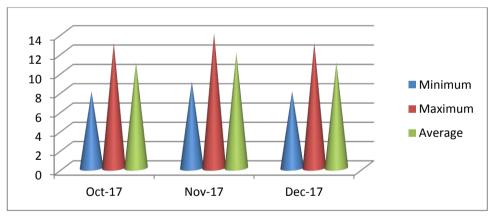
2) Samri Chowk Lease Area Buffer Zone :- For the Months of Jan-Feb-Mar-2018 Avg. of SO₂ is 11µg/m³.

3) Rajendrapur Lease Area Buffer Zone: - For the Months of Jan-Feb-Mar-2018 Avg. of SO₂ is 10µg/m³.

4) Tatijharia Village Lease Area Buffer Zone: - For the Months of Jan-Feb-Mar-2018 Avg. of SO2 is 11µg/m³.

[•] The Average Concentration of SO₂ within the Buffer Zone of Kudag Lease is 10µg/m³ and it is within permissible limits as per CPCB Standard.

2.6 Fugitive Emission (Core Zone):-

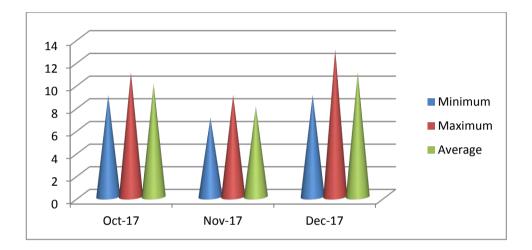

2.6.1 <u>Presentation of Results.</u>

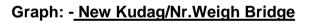
The summary of Statistical Analysis of SO_2 results for the month of January-2018 to March-2018 are presented in detail in **Table 9**. 98th percentile; maximum, minimum and average values etc. have been computed from the collected raw data for all the Fugitive emission monitoring station.

Sairaidh Campus

For the month of January-2018 the minimum and maximum concentrations for SO_2 were recorded as $10\mu g/m^3$ and $15\mu g/m^3$ respectively and average concentration of $13\mu g/m^3$. For the month of February-2018 the minimum and maximum concentrations for SO_2 were recorded as $11\mu g/m^3$ and $16\mu g/m^3$ respectively and average concentration of $14\mu g/m^3$.

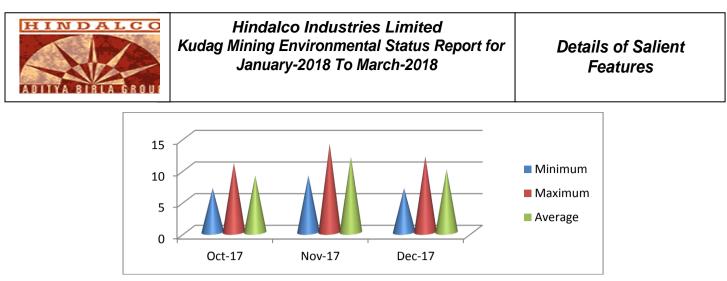
For the month of March-2018 the minimum and maximum concentrations for SO_2 were recorded as $10\mu g/m^3$ and $15\mu g/m^3$ respectively and average concentration of $13\mu g/m^3$.


Graph :- Sairaidh Campus


New Kudag/Nr.Weigh Bridge

For the month of January-2018 the minimum and maximum concentrations for SO_2 were recorded as $11\mu g/m^3$ and $13\mu g/m^3$ respectively and average concentration of $12\mu g/m^3$. For the month of February-2018 the minimum and maximum concentrations for SO_2 were recorded as $9\mu g/m^3$ and $11\mu g/m^3$ respectively and average concentration of $10\mu g/m^3$.

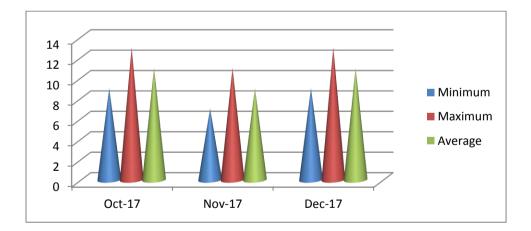
For the month of March-2018 the minimum and maximum concentrations for SO_2 were recorded as $11\mu g/m^3$ and $15\mu g/m^3$ respectively and average concentration of $13\mu g/m^3$.



Old Kudag/Mining Area

For the month of January-2018 the minimum and maximum concentrations for SO_2 were recorded as $9\mu g/m^3$ and $13\mu g/m^3$ respectively and average concentration of $11\mu g/m^3$. For the month of February-2018 the minimum and maximum concentrations for SO_2 were recorded as $11\mu g/m^3$ and $16\mu g/m^3$ respectively and average concentration of $14\mu g/m^3$.

For the month of March-2018 the minimum and maximum concentrations for SO_2 were recorded as $9\mu g/m^3$ and $14\mu g/m^3$ respectively and average concentration of $12\mu g/m^3$.



Graph: - Old Kudag/Mining Area

Khas Kudag

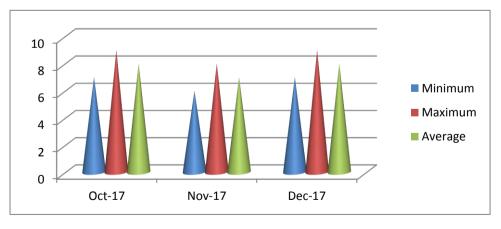
For the month of January-2018 the minimum and maximum concentrations for SO_2 were recorded as $11\mu g/m^3$ and $15\mu g/m^3$ respectively and average concentration of $13\mu g/m^3$. For the month of February-2018 the minimum and maximum concentrations for SO_2 were recorded as $9\mu g/m^3$ and $13\mu g/m^3$ respectively and average concentration of $11\mu g/m^3$.

For the month of March-2018 the minimum and maximum concentrations for SO_2 were recorded as $11\mu g/m^3$ and $15\mu g/m^3$ respectively and average concentration of $13\mu g/m^3$.

Graph: - Khas Kudag

2.7 Fugitive Emission (Buffer Zone):-

2.7.1 Presentation of Results.


The summary of Statistical Analysis of SO_2 results for the month of January-2018 to March-2018 are presented in detail in **Table 9**. 98th percentile; maximum, minimum and average values etc. have been computed from the collected raw data for all the Fugitive emission monitoring station.

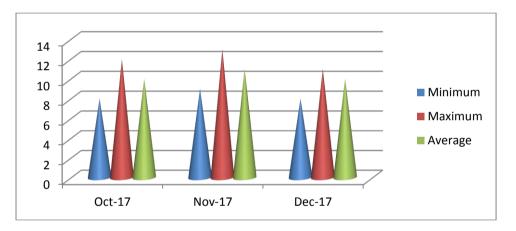
Jaljali Village

For the month of January-2018 the minimum and maximum concentrations for SO_2 were recorded as $8.0\mu g/m^3$ and $10.0\mu g/m^3$ respectively and average concentration of $9.0\mu g/m^3$.

For the month of February-2018 the minimum and maximum concentrations for SO_2 were recorded as 7.0µg/m³ and 9.0µg/m³ respectively and average concentration of 8.0µg/m³.

For the month of March-2018 the minimum and maximum concentrations for SO_2 were recorded as $8.0\mu g/m^3$ and $10.0\mu g/m^3$ respectively and average concentration of $9.0\mu g/m^3$.

Graph: - Jaljali Village



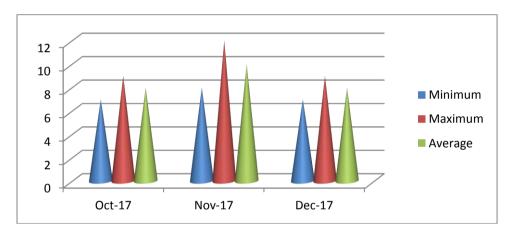
Samri Chowk/Nr.Old Weigh Bridge

For the month of January-2018 the minimum and maximum concentrations for SO_2 were recorded as $9.0\mu g/m^3$ and $13.0\mu g/m^3$ respectively and average concentration of $11.0\mu g/m^3$.

For the month of February-2018 the minimum and maximum concentrations for SO_2 were recorded as 10.0μ g/m³ and 14.0μ g/m³ respectively and average concentration of 12.0μ g/m³.

For the month of March-2018 the minimum and maximum concentrations for SO_2 were recorded as $9.0\mu g/m^3$ and $12.0\mu g/m^3$ respectively and average concentration of $11.0\mu g/m^3$.

Graph: - Samri Chowk/Nr.Old Weigh Bridge



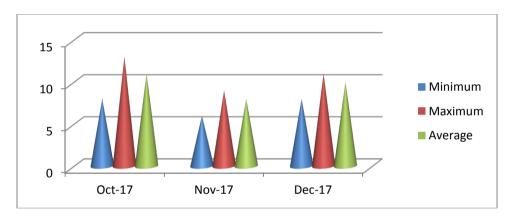
<u>Rajendrapur</u>

For the month of January-2018 the minimum and maximum concentrations for SO_2 were recorded as $8.0\mu g/m^3$ and $10.0\mu g/m^3$ respectively and average concentration of $9.0\mu g/m^3$.

For the month of February-2018 the minimum and maximum concentrations for SO_2 were recorded as 9.0μ g/m³ and 13.0μ g/m³ respectively and average concentration of 11.0μ g/m³.

For the month of March-2018 the minimum and maximum concentrations for SO_2 were recorded as $8.0\mu g/m^3$ and $10.0\mu g/m^3$ respectively and average concentration of $9.0\mu g/m^3$.

Graph: - Rajendrapur



Tatijharia Village

For the month of January-2018 the minimum and maximum concentrations for SO_2 were recorded as $9.0\mu g/m^3$ and $14.0\mu g/m^3$ respectively and average concentration of $12.0\mu g/m^3$.

For the month of February-2018 the minimum and maximum concentrations for SO_2 were recorded as 7.0μ g/m³ and 10.0μ g/m³ respectively and average concentration of 9.0μ g/m³.

For the month of March-2018 the minimum and maximum concentrations for SO_2 were recorded as $9.0\mu g/m^3$ and $12.0\mu g/m^3$ respectively and average concentration of $11.0\mu g/m^3$.

Graph: - Tatijharia Village

Details of Salient Features

Table 10Statistical Analysis of NOx

		,			Unit:	µg/m³
Location	Month & Year	Min.	Max.	A.M.	G.M.	98%
Fugitive Emission (Core	Zone):-					
	January-2018	21	29	25	25	29
Sairaidh Campus	February-2018	20	32	26	26	32
	March-2018	22	33	28	28	33
New Kudag/Nr. Weigh	January-2018	19	30	25	25	30
Bridge	February-2018	20	27	24	24	27
	March-2018	23	32	28	28	32
	January-2018	22	29	26	26	29
Old Kudag/Mining Area	February-2018	22	28	25	25	28
Alea	March-2018	23	33	28	28	33
	January-2018	22	30	26	26	30
Khas Kudag	February-2018	20	28	24	24	28
	March-2018	22	32	27	27	32
CPCB Sta	CPCB Standard			80 µg/m ³ (24 hrs)		

Location	Month & Year	Min.	Max.	A.M.	G.M.	98%			
Buffer Zone :-									
	January-2018	14	18	16	16	18			
Jaljali Village	February-2018	16	21	19	19	21			
	March-2018	15	18	17	17	18			
	January-2018	14	23	19	19	23			
Samri Chowk/ Nr.Old Weigh Bridge	February-2018	14	21	18	18	21			
NI.Old Weigh Blidge	March-2018	15	26	21	21	26			
	January-2018	17	23	20	20	23			
Rajendrapur	February-2018	16	24	20	20	24			
	March-2018	16	21	19	19	21			
	January-2018	14	19	17	17	19			
Tatijharia Village	February-2018	16	18	17	17	18			
	March-2018	14	17	16	16	17			
CPCB Sta	CPCB Standard			80 μg/m ³ (24 hrs)					

Conclusion-A:-

1) Sairaidh Campus Lease Area Core Zone :- For the Months of Jan-Feb-Mar-2018 Avg. of NO_X is 26µg/m³.

2) <u>New Kudag/Nr.Weigh Bridge Lease Area Core Zone</u>:- For the Months of Jan-Feb-Mar-2018 Avg. of NO_X is 26µg/m3.

3) Old Kudag/Mining Lease Area Core Zone: - For the Months of Jan-Feb-Mar-2018 Avg. of NO_X is 26µg/m³.

4) Khas Kudag Lease Area Core Zone: - For the Months of Jan-Feb-Mar-2018 Avg. of NO_X is 26µg/m³.

• The Average Concentration of NO_x within the core zone of Kudag Lease is $26\mu g/m^3$ and it is within permissible limits as per CPCB Standard.

Conclusion-B:-

1) Jaljali Village Lease Area Buffer Zone :- For the Months of Jan-Feb-Mar-2018 17 Avg. of NO_X is 17µg/m³.

2) Samri Chowk Lease Area Buffer Zone :- For the Months of Jan-Feb-Mar-2018 Avg. of NO_X is 19µg/m³.

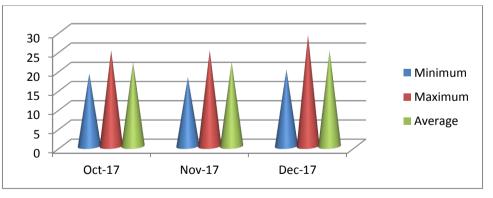
3) Rajendrapur Lease Area Buffer Zone: - For the Months of Jan-Feb-Mar-2018 Avg. of NO_X is 20µg/m³.

- 4) Tatijharia Village Lease Area Buffer Zone: For the Months of Jan-Feb-Mar-2018 Avg. of NO_X is 17µg/m³.
- The Average Concentration of NO_x within the Buffer Zone of Kudag Lease is 18µg/m³ and it is within permissible limits as per CPCB Standard.

Monthwise Summary of Statistical Analysis of NOx

2.8 Fugitive Emission (Core Zone):-

2.8.1 <u>Presentation of Results.</u>


The summary of Statistical Analysis of NO_X results for the month of January-2018 to March-2018 are presented in detail in **Table 10**. 98th percentile; maximum, minimum and average values etc. have been computed from the collected raw data for all the Fugitive emission monitoring station.

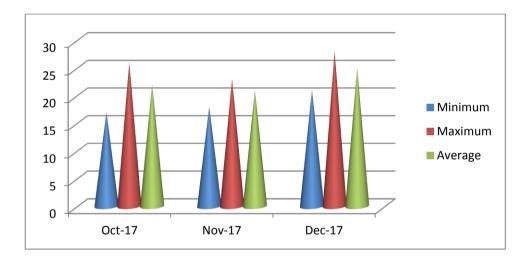
Sairaidh Campus

For the month of January-2018 the minimum and maximum concentrations for NO_X were recorded as 21.0µg/m³ and 29.0µg/m³ respectively and average concentration of 25.0µg/m³.

For the month of February-2018 the minimum and maximum concentrations for NO_X were recorded as 20.0µg/m³ and 32.0µg/m³ respectively and average concentration of 26.0µg/m³.

For the month of March-2018 the minimum and maximum concentrations for NO_X were recorded as $22.0\mu g/m^3$ and $33.0\mu g/m^3$ respectively and average concentration of $28.0\mu g/m^3$.

Graph :- Sairaidh Campus



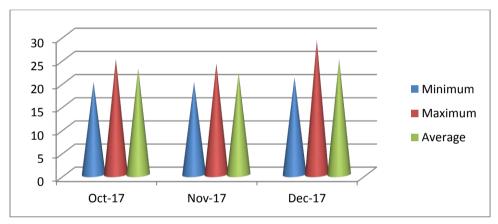
New Kudag/Nr.Weigh Bridge

For the month of January-2018 the minimum and maximum concentrations for NO_X were recorded as $19.0\mu g/m^3$ and $30.0\mu g/m^3$ respectively and average concentration of $25.0\mu g/m^3$.

For the month of February-2018 the minimum and maximum concentrations for NO_X were recorded as 20.0µg/m³ and 27.0µg/m³ respectively and average concentration of 24.0µg/m³.

For the month of March-2018 the minimum and maximum concentrations for NO_X were recorded as $23.0\mu g/m^3$ and $32.0\mu g/m^3$ respectively and average concentration of $28.0\mu g/m^3$.

Graph: - New Kudag/Nr.Weigh Bridge



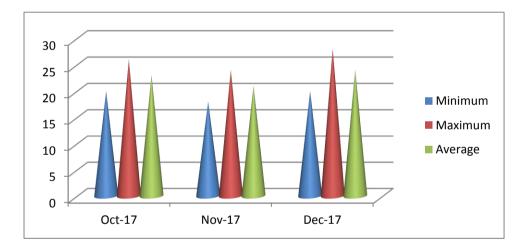
Old Kudag/Mining Area

For the month of January-2018 the minimum and maximum concentrations for NO_X were recorded as 22.0µg/m³ and 29.0µg/m³ respectively and average concentration of 26.0µg/m³.

For the month of February-2018 the minimum and maximum concentrations for NO_X were recorded as 22.0µg/m³ and 28.0µg/m³ respectively and average concentration of 25.0µg/m³.

For the month of March-2018 the minimum and maximum concentrations for NO_X were recorded as $23.0\mu g/m^3$ and $33.0\mu g/m^3$ respectively and average concentration of $28.0\mu g/m^3$.

Graph: - Old Kudag/Mining Area



<u>Khas Kudag</u>

For the month of January-2018 the minimum and maximum concentrations for NO_X were recorded as 22.0µg/m³ and 30.0µg/m³ respectively and average concentration of 26.0µg/m³.

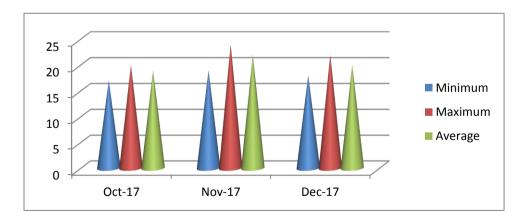
For the month of February-2018 the minimum and maximum concentrations for NO_X were recorded as 20.0µg/m³ and 28.0µg/m³ respectively and average concentration of 24.0µg/m³.

For the month of March-2018 the minimum and maximum concentrations for NO_X were recorded as $22.0\mu g/m^3$ and $32.0\mu g/m^3$ respectively and average concentration of $27.0\mu g/m^3$.

Graph: - Khas Kudag

2.9 Fugitive Emission (Buffer Zone):-

2.9.1 Presentation of Results.


The summary of Statistical Analysis of NO_X results for the month of October-2017 to December-2017 are presented in detail in **Table 10**. 98th percentile; maximum, minimum and average values etc. have been computed from the collected raw data for all the Fugitive emission monitoring station.

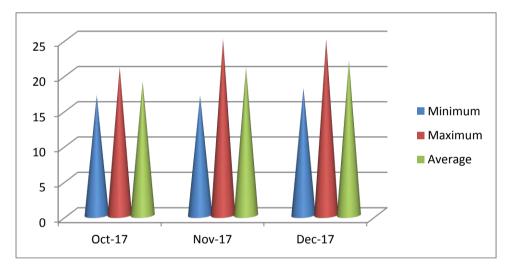
<u>Jaljali Village</u>

For the month of January-2018 the minimum and maximum concentrations for NO_X were recorded as 14.0µg/m³ and 18.0µg/m³ respectively and average concentration of 16.0µg/m³.

For the month of February-2018 the minimum and maximum concentrations for NO_X were recorded as $16.0\mu g/m^3$ and $21.0\mu g/m^3$ respectively and average concentration of $19.0\mu g/m^3$.

For the month of March-2018 the minimum and maximum concentrations for NO_X were recorded as $15.0\mu g/m^3$ and $18.0\mu g/m^3$ respectively and average concentration of $17.0\mu g/m^3$.

Graph: - Jaljali Village

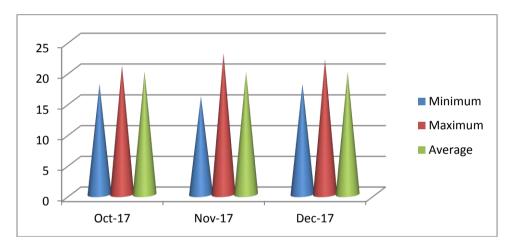


Samri Chowk/Nr.Old Weigh Bridge

For the month of January-2018 the minimum and maximum concentrations for NO_X were recorded as 14.0µg/m³ and 23.0µg/m³ respectively and average concentration of 19.0µg/m³.

For the month of February-2018 the minimum and maximum concentrations for NO_X were recorded as 14.0µg/m³ and 21.0µg/m³ respectively and average concentration of 18.0µg/m³.

For the month of March-2018 the minimum and maximum concentrations for NO_X were recorded as $15.0\mu g/m^3$ and $26.0\mu g/m^3$ respectively and average concentration of $21.0\mu g/m^3$.



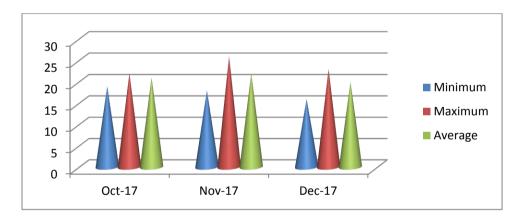
<u>Rajendrapur</u>

For the month of January-2018 the minimum and maximum concentrations for NO_X were recorded as 17.0µg/m³ and 23.0µg/m³ respectively and average concentration of 20.0µg/m³.

For the month of February-2018 the minimum and maximum concentrations for NO_X were recorded as 16.0µg/m³ and 24.0µg/m³ respectively and average concentration of 20.0µg/m³.

For the month of March-2018 the minimum and maximum concentrations for NO_X were recorded as $16.0\mu g/m^3$ and $21.0\mu g/m^3$ respectively and average concentration of $19.0\mu g/m^3$.

<u> Graph: - Rajendrapur</u>



Tatijharia Village

For the month of January-2018 the minimum and maximum concentrations for NO_X were recorded as 14.0µg/m³ and 19.0µg/m³ respectively and average concentration of 17.0µg/m³.

For the month of February-2018 the minimum and maximum concentrations for NO_X were recorded as 16.0µg/m³ and 18.0µg/m³ respectively and average concentration of 17.0µg/m³.

For the month of March-2018 the minimum and maximum concentrations for NO_X were recorded as $14.0\mu g/m^3$ and $17.0\mu g/m^3$ respectively and average concentration of $16.0\mu g/m^3$.

Graph: - Tatijharia Village

Details of Salient Features

<u>Table 11</u> Statistical Analysis of Pb

			-		Unit: J	ug/m³
Location	Month & Year	Month & Year Min. Max.				98%le
Fugitive Emission (Core Zor	ne):-					
	January-2018	0.024	0.038	0.031	0.031	0.038
Sairaidh Campus	February-2018	0.028	0.042	0.035	0.035	0.042
	March-2018	0.035	0.035 0.049		0.042	0.049
New Kudag/Nr. Weigh	January-2018	0.034	0.048	0.041	0.041	0.048
Bridge	February-2018	0.041	0.055	0.048	0.048	0.055
	March-2018	0.036	0.050	0.043	0.043	0.050
	January-2018	0.033	0.047	0.040	0.040	0.047
Old Kudag/Mining Area	February-2018	0.038	0.052	0.045	0.045	0.052
	March-2018	0.034	0.048	0.041	0.041	0.048
	January-2018	0.039	0.053	0.046	0.046	0.053
Khas Kudag	February-2018	0.043	0.057	0.050	0.050	0.057
	March-2018	0.034	0.048	0.041	0.041	0.048
CPCB Stand			1.0 µg/m (24 hrs)	3		

Location	Month & Year	Min.	Max.	A.M.	G.M.	98%le
Buffer Zone :-						
	January-2018	ND	ND	ND	ND	ND
Jaljali Village	February-2018	ND	ND	ND	ND	ND
	March-2018	ND	ND	ND	ND	ND
Commi Chowdy (January-2018	ND	ND	ND	ND	ND
Samri Chowk/ Nr.Old Weigh Bridge	February-2018	ND	ND	ND	ND	ND
Nr.Old weigh Bridge	March-2018	ND	ND	ND	ND	ND
	January-2018	ND	ND	ND	ND	ND
Rajendrapur	February-2018	ND	ND	ND	ND	ND
	March-2018	ND	ND	ND	ND	ND
	January-2018	ND	ND	ND	ND	ND
Tatijharia Village	February-2018	ND	ND	ND	ND	ND
	March-2018	ND	ND	ND	ND	ND
CPCB Standa	1.0 μg/m ³ (24 hrs)					

Conclusion: A)

The Average Concentration of Pb within the Core Zone of Kudag Lease during this period (Jan-Feb-March-2018) is $0.042\mu g/m^3$ and it is within permissible limits as per CPCB Standard.

Conclusion: B)

The Average Concentration of Pb within the Buffer Zone of Kudag Lease during this period (Jan-Feb-March-2018) was not detected at any of the locations.

Table 12 Statistical Analysis of Hg

		Unit: µg/ı							
Location	Month & Year	Min.	Max.	A.M.	G.M.	98%			
Fugitive Emission (Core Zone	e):-								
	January-2018	ND	ND	ND	ND	ND			
Sairaidh Campus	February-2018	ND	ND	ND	ND	ND			
	March-2018	ND	ND	ND	ND	ND			
New Kudag/Nr. Weigh	January-2018	ND	ND	ND	ND	ND			
Bridge	February-2018	ND	ND	ND	ND	ND			
	March-2018	ND	ND	ND	ND	ND			
	January-2018	ND	ND	ND	ND	ND			
Old Kudag/Mining Area	February-2018	ND	ND	ND	ND	ND			
	March-2018	ND	ND	ND	ND	ND			
	January-2018	ND	ND	ND	ND	ND			
Khas Kudag	February-2018	ND	ND	ND	ND	ND			
-	March-2018	ND	ND	ND	ND	ND			
CPCB Standard									
Buffer Zone :									
	January-2018	ND	ND	ND	ND	ND			
Jaljali Village	February-2018	ND	ND	ND	ND	ND			
	March-2018	ND	ND	ND	ND	ND			
	January-2018	ND	ND	ND	ND	ND			
Samri Chowk/	February-2018	ND	ND	ND	ND	ND			
Nr.Old Weigh Bridge	March-2018	ND	ND	ND	ND	ND			
	January-2018	ND	ND	ND	ND	ND			
Rajendrapur	February-2018	ND	ND	ND	ND	ND			
	March-2018	ND	ND	ND	ND	ND			
	January-2018	ND	ND	ND	ND	ND			
Tatijharia Village	February-2018	ND	ND	ND	ND	ND			
	March-2018	ND	ND	ND	ND	ND			
CPCB Standard									

Conclusion: A

The Average Concentration of Hg within the Core Zone of Kudag Lease during this period (Jan-Feb-March-2018) was not detected at any of the locations and it is within permissible limits as per CPCB Standard.

Conclusion: B)

The Average Concentration of Hg within the Buffer Zone of Kudag Lease during this period (Jan-Feb-March-2018) was not detected at any of the locations and it is within permissible limits as per CPCB Standard.

<u> Table 13</u>

Statistical Analysis of As

					Unit: r	າg/m³
Location	Month & Year	Min.	Max.	A.M.	G.M.	98%
Fugitive Emission (Core Zor	ne):-					
	January-2018	ND	ND	ND	ND	ND
Sairaidh Campus	February-2018	ND	ND	ND	ND	ND
-	March-2018	ND	ND	ND	ND	ND
New Kudes (Nr. Weish Bridge	January-2018	ND	ND	ND	ND	ND
New Kudag/Nr. Weigh Bridge	February-2018	ND	ND	ND	ND	ND
	March-2018	ND	ND	ND	ND	ND
	January-2018	ND	ND	ND	ND	ND
Old Kudag/Mining Area	February-2018	ND	ND	ND	ND	ND
	March-2018	ND	ND	ND	ND	ND
	January-2018	ND	ND	ND	ND	ND
Khas Kudag	February-2018	ND	ND	ND	ND	ND
	March-2018	ND	ND	ND	ND	ND
CPCB Standard		0	6 ng/m	3		
CPCB Standard			(Annual)			
Buffer Zone :-						
	January-2018	ND	ND	ND	ND	ND
Jaljali Village	February-2018	ND	ND	ND	ND	ND
	March-2018	ND	ND	ND	ND	ND
Samri Chowk/	January-2018	ND	ND	ND	ND ND ND ND	ND
Nr.Old Weigh Bridge	February-2018	ND	ND	ND	ND	ND
	March-2018	ND	ND	ND	ND	ND
	January-2018	ND	ND	ND	ND	ND
Rajendrapur	February-2018	ND	ND	ND	ND	ND
	March-2018	ND	ND	ND	ND	ND
	January-2018	ND	ND	ND	ND	ND
Tatijharia Village	February-2018	ND	ND	ND	ND	ND
	March-2018	ND	ND	ND	ND	ND
CPCB Standard	d			06 ng/m (Annual		

Conclusion: A

The Average Concentration of As within the Core Zone of Kudag Lease during this period (Jan-Feb-March-2018) was not detected at any of the locations and it is within permissible limits as per CPCB Standard.

Conclusion: B)

The Average Concentration of As within the Buffer Zone of Kudag Lease during this period (Jan-Feb-March-2018) was not detected at any of the locations and it is within permissible limits as per CPCB Standard.

Free Silica:-

Sr. No.	Location	Measurement Unit	January-2018		February-2018		March-2018	
			SPM	RSPM	SPM	RSPM	SPM	RSPM
1.	Old Kudag/Mining Area	g/100gm	0.28	0.17	0.32	0.18	0.24	0.16

<u>Table 14</u> Dust fall rate

SI.No.	Location	January-2018	February-2018	March-2018	Average					
		Rate (mt/km2/month)								
1	Old Kudag/Mining Area	17.9	23.8	24.7	22.1					
2	Khas kudag	16.8	21.9	26.1	21.6					

Table 15 Noise Level Monitoring

	1	-1			Uni	t: dB(A) l	.eq	
SI. No.	Location	January-2018		February-2018		March-2018		
		Day	Day Night		Day Night		Night	
Core Zone								
1	Sairaidh Campus	52.7	41.9	56.2	43.8	61.4	46.2	
2	New Kudag/Near Weigh Bridge	58.1	47.3	64.3	56.2	59.3	47.1	
3	Old Kudag/Mining Area	61.8	52.6	59.1	48.6	53.7	41.9	
4	Khas Kudag	56.3	42.8	61.4	42.7	59.1	48.6	
Buf	fer Zone							
1	Jaljali Village	47.3	37.1	51.4	42.9	48.1	38.2	
2	Samri Chowk/Nr.Old Weigh Bridge	54.1	43.7	48.9	38.2	51.6	41.9	
3	Rajendrapur	48.7	36.2	51.7	41.6	49.3	37.1	
4	Tatijharia Village	51.6	42.4	47.8	36.1	52.4	43.6	

CPCB Standards for Residential Area: 55 (Day time) 45 (Night time) Industrial Area: 75 (Day time) 70 (Night time)

-- --

.

<u>Table 15-A</u>

HEMM Spot Noise Level Monitoring

							Un	it: dB((A) Leq	
Sr. No.	Location	January-2018		February-2018			March-2018			
		Min.	Max.	Avg.	Min.	Max.	Avg.	Min.	Max.	Avg.
1	New Kudag/Nr.Weigh Bridge	67.1	74.8	71.0	69.3	72.4	70.9	68.1	82.4	75.3

3.0 Ground Water Quality: Most of the villages in the nearby plant area have Hand Pumps and wells, as most of the residents of these villages make use of this water for drinking and other domestic uses for TABLE NO.16

Table 16

Report on Chemical Examination of Ground Water

Location: GW1: 1) Old Kudag/Mining Area-March-2018

Sr. No.	Test Parameter	Measurement Unit	Test Method	(Drinking	0500 : 2012 g Water - ication)	Test Result
NO.		Onit		Acceptable Limit	*Permissible Limit	
1.	pH value	-	IS 3025 (Part 11)	6.5 to 8.5	No relaxation	7.16 at 25°C
2.	Turbidity	NTU	IS 3025 (Part 10)	1	5	0.8
3.	Colour	Hazen units	IS 3025 (Part 4)	5	15	1
4.	Odour	-	IS 3025 (Part 5)	Agreeable Agreeable		Agreeable
5.	Taste	-	IS 3025 (Part 8)	Agreeable	Agreeable	Agreeable
6.	Iron (as Fe)	mg/l	IS 3025 (Part 2)	1.0	No relaxation	0.13
7.	Free residual chlorine	mg/l	IS 3025 (Part 26)	Min. 0.2	Min. 1	< 0.1
8.	Total dissolved solids	mg/l	IS 3025 (Part 16)	500	2000	279
9.	Fluoride (as F)	mg/l	IS 3025 (Part 60)	1.0	1.5	0.32
10.	Cyanide (as CN)	mg/l	IS 3025 (Part 27)	0.05	No relaxation	< 0.005
11.	Chloride (as Cl)	mg/l	IS 3025 (Part 32)	250	1000	54.76
12.	Total Alkalinity (as CaCO ₃)	mg/l	IS 3025 (Part 23)	200	600	108.59
13.	Total hardness (as CaCO ₃)	mg/l	IS 3025 (Part 21)	200	600	166.21
14.	Calcium (as Ca)	mg/l	IS 3025 (Part 40)	75	200	52.72
15.	Magnesium (as Mg)	mg/l	IS 3025 (Part 46)	30	100	8.38
16.	Sulphate (as SO ₄)	mg/l	IS 3025 (Part 24)	200	400	38.76
17.	Nitrate (as NO ₃)	mg/l	APHA Method	45	No relaxation	7.94
18.	Copper (as Cu)	mg/l	IS 3025 (Part 2)	0.05	1.5	< 0.03
19.	Manganese (as Mn)	mg/l	IS 3025 (Part 2)	0.1	0.3	< 0.05
20.	Mercury (as Hg)	mg/l	IS 3025 (Part 2)	0.001	No relaxation	< 0.0005
21.	Cadmium (as Cd)	mg/l	IS 3025 (Part 2)	0.003	No relaxation	< 0.001
22.	Selenium (as Se)	mg/l	IS 3025 (Part 2)	0.01	No relaxation	< 0.001
23.	Arsenic (as As)	mg/l	IS 3025 (Part 2)	0.01	No relaxation	< 0.01
24.	Aluminium (as Al)	mg/l	IS 3025 (Part 2)	0.03	0.2	< 0.005
25.	Lead (as Pb)	mg/l	IS 3025 (Part 2)	0.01	No relaxation	< 0.001
26.	Zinc (as Zn)	mg/l	IS 3025 (Part 2)	5	15	< 0.1
27.	Nickel (as Ni)	mg/l	IS 3025 (Part 2)	0.02	No relaxation	< 0.01
28.	Total Chromium (as Cr)	mg/l	IS 3025 (Part 2)	0.05	No relaxation	< 0.03
29.	Barium (as Ba)	mg/l	Annexure F of IS 13428	0.7	No relaxation	< 0.01
30.	Ammonia (as N)	mg/l	IS 3025 (Part 34)	0.5	No relaxation	< 0.01
31.	Sulphide (as H ₂ S)	mg/l	IS 3025 (Part 29)	0.05	No relaxation	< 0.03
32.	Chloramines (as Cl ₂)	mg/l	APHA 4500-CI'G	4.0	No relaxation	< 0.01

TEST RESULTS

Contd.....

(Contd.....)

Sr. No	Test Parameter		urement Init	Tes	st Method		(Drinkin	0500 : 2012 g Water - ication) *Permissible	Test Result
							Limit	Limit	
33.	Molybdenum (as Mo)	n	ng/l	IS 3	025 (Part 2)		0.07	No relaxation	< 0.001
34.	Silver (as Ag)	n	ng/l	Annexur	re J of IS 13428		0.1	No relaxation	< 0.001
35.	Polychlorinated Biphenyls (PCB)	μ	ıg/l	UE	DECA 508		0.5 No relaxation		< 0.03
36.	Boron (as B)	n	ng/l	IS 3	025 (Part 2)		0.5 1.0 0.5 No relaxation		< 0.1
37.	Mineral Oil	rr	ng/l	IS 30)25 (Part 39)		0.5	< 0.001	
38.	Tri Halo Methane	T				1			
	a. Bromoform	-				0.1		No relaxation	Absent
	b. Dibromochloromethane	n n	ng/l	AP	'HA 6232		0.1	No relaxation	Absent
	c. Bromodichloromethane		.9,.	7.0			0.06 No relaxation		Absent
	d.Chloroform						0.2	No relaxation	Absent
39.	Phenolic compounds (as C_6H_5OH)	rr	ng/l	IS 3025 (Part 43) :1001			0.001	0.002	< 0.001
40.	Anionic detergents (as MBAS)	rr	ng/l	IS 13428:2005 (Annex K)			0.2 1.0		< 0.001
41.	Polynuclear aromatic hydrocarbon (PAH)		ıg/l	UDECA : 550			0.1	No relaxation	< 0.03
42.	Total coliform		′100 ml		IS 1622				< 2
43.	Escherichia coli	Per1	00 ml		IS 1622	A	Absent	Absent	Absent
Sr. No.	Test Parameter			rement nit	Lest Metho		As per IS (Drinl Spe	Test Result	
44.	Pesticides residues								
i.	Alpha-HCH		μο	g/l	UDECA 50)8	0.01		< 0.01
ii.	Beta HCH		μç	g/l	UDECA 50)8		0.04	< 0.03
iii.	Delta- HCH		μç	•	UDECA 50)8		0.04	< 0.03
iv.	Alachlor		μç	•	UDECA 50			20	< 0.03
V.	Aldrin / Dieldrin		μç		UDECA 50			0.03	< 0.03
vi.	Atrazine		μç		UDECA 16			2	< 0.03
vii.	Butachlor		μç		UDECA 50			125	< 0.03
viii.	Chlorpyrifos		µg		UDECA 16			30	< 0.03
ix.	DDT and its Isomers		με μς		UDECA 50			1	< 0.03
X.	Gamma - HCH (Lindane)		μς μς		UDECA 50			2	< 0.03
xi.	2,4-Dichlorophenoxyacetic	acid	μς μς		UDECA 16			30	< 0.03
xii.	Endosulphan	acia	μς μς		UDECA 50			0.4	< 0.03
xiii.	Ethion		μς μς		UDECA 30			3	< 0.03
xiii. xiv.			ին հե		UDECA 16			9	< 0.03
	Isoproturon Malathian								
XV.	Malathion Mathud Darathian		μς		UDECA 16				< 0.03
xvi.	Methyl Parathion		μς		UDECA 16			0.3	< 0.03
xvii.	Monocrotophos Phorate		μ <u>ς</u> μς		UDECA 16 UDECA 16			1 2	< 0.03 < 0.03
kviii.						n /		• •	

Note: 1. Results relate to tested sample only.2. Test report should not be reproduced partially. 3. *Permissible limit in the absence of alternate source. 4. 'mg/l' is equivalent to 'ppm' 5. 'µg/l' is equivalent to 'ppb' 6. '<' indicates detection limit of the laboratory. 7. MPN-Most probable number.8. Results for test no. 7 are not applicable.

REMARKS: Based upon request of the party, sample was tested for above mentioned parameters only. Sample complies with IS:10500:2012, for tests conducted, indicating that it is fit for drinking purpose with respect to tested parameters.

Details of Salient Features

Table 17 Monthly Report on Chemical Examination of Surface Water

(Nalahs near Mining Area) <u>March-2018</u>

Sr. No.	Test Parameter	Measurement Unit	Test Method	As per IS 1 (Drinkin Specif	Test Result	
NO.		Onit		Acceptable Limit	*Permissible Limit	
1.	pH value	-	IS 3025 (Part 11)	6.5 to 8.5	No relaxation	8.04 at 25°C
2.	Turbidity	NTU	IS 3025 (Part 10)	1	5	16
3.	Colour	Hazen units	IS 3025 (Part 4)	5	15	6
4.	Odour	-	IS 3025 (Part 5)	Agreeable	Agreeable	Agreeable
5.	Taste	-	IS 3025 (Part 8)	Agreeable	Agreeable	Agreeable
6.	Iron (as Fe)	mg/l	IS 3025 (Part 2)	1.0	No relaxation	0.52
7.	Free residual chlorine	mg/l	IS 3025 (Part 26)	Min. 0.2	Min. 1	< 0.1
8.	Total dissolved solids	mg/l	IS 3025 (Part 16)	500	2000	416
9.	Fluoride (as F)	mg/l	IS 3025 (Part 60)	1.0	1.5	0.43
10.	Cyanide (as CN)	mg/l	IS 3025 (Part 27)	0.05	No relaxation	< 0.005
11.	Chloride (as Cl)	mg/l	IS 3025 (Part 32)	250	1000	152.43
12.	Total Alkalinity (as CaCO ₃)	mg/l	IS 3025 (Part 23)	200	600	116.54
13.	Total hardness (as CaCO ₃)	mg/l	IS 3025 (Part 21)	200	600	242.80
14.	Calcium (as Ca)	mg/l	IS 3025 (Part 40)	75	200	76.29
15.	Magnesium (as Mg)	mg/l	IS 3025 (Part 46)	30	100	12.68
16.	Sulphate (as SO ₄)	mg/l	IS 3025 (Part 24)	200	400	127.34
17.	Nitrate (as NO ₃)	mg/l	APHA Method	45	No relaxation	7.29
18.	Copper (as Cu)	mg/l	IS 3025 (Part 2)	0.05	1.5	< 0.03
19.	Manganese (as Mn)	mg/l	IS 3025 (Part 2)	0.1	0.3	<0.05
20.	Mercury (as Hg)	mg/l	IS 3025 (Part 2)	0.001	No relaxation	< 0.0005
21.	Cadmium (as Cd)	mg/l	IS 3025 (Part 2)	0.003	No relaxation	< 0.001
22.	Selenium (as Se)	mg/l	IS 3025 (Part 2)	0.01	No relaxation	< 0.001
23.	Arsenic (as As)	mg/l	IS 3025 (Part 2)	0.01	No relaxation	< 0.01
24.	Aluminium (as Al)	mg/l	IS 3025 (Part 2)	0.03	0.2	< 0.005
25.	Lead (as Pb)	mg/l	IS 3025 (Part 2)	0.01	No relaxation	< 0.001
26.	Zinc (as Zn)	mg/l	IS 3025 (Part 2)	5	15	< 0.1
27.	Nickel (as Ni)	mg/l	IS 3025 (Part 2)	0.02	No relaxation	< 0.01
28.	Total Chromium (as Cr)	mg/l	IS 3025 (Part 2)	0.05	No relaxation	< 0.03
29.	Barium (as Ba)	mg/l	Annexure F of IS 13428	0.7	No relaxation	< 0.01
30.	Ammonia (as N)	mg/l	IS 3025 (Part 34)	0.5	No relaxation	< 0.01
31.	Sulphide (as H ₂ S)	mg/l	IS 3025 (Part 29)	0.05	No relaxation	< 0.03

Details of Salient Features

32.	Chloramines (as Cl ₂)	mg/l	APHA 4500-CI'G	4.0	No relaxation	< 0.01

Contd.....

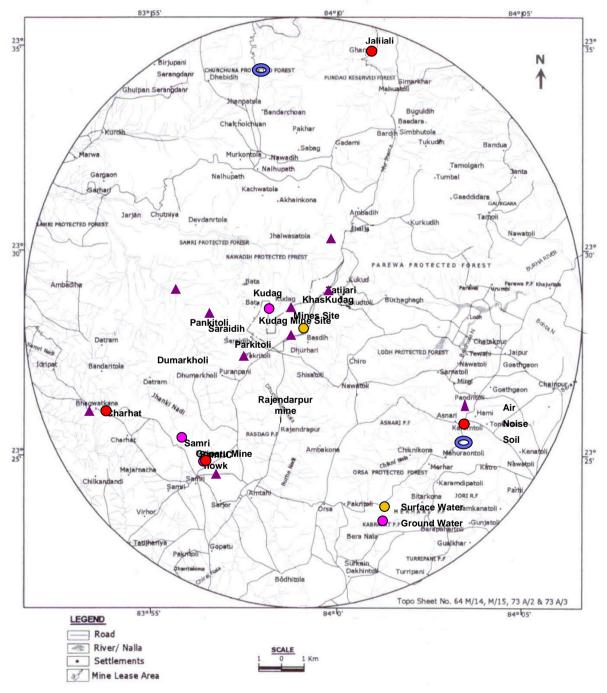
(Contd.....)

Sr. No	Test Parameter		urement Jnit	Test Method		As per IS 10500 : 2012 (Drinking Water - Specification) Acceptable *Permissible		Test Result	
							.imit	Limit	
33.	Molybdenum (as Mo)	n	ng/l		025 (Part 2)		0.07	No relaxation	< 0.001
34.	Silver (as Ag)	n	ng/l	Annexu	e J of IS 13428		0.1	No relaxation	< 0.001
35.	Polychlorinated Biphenyls (PCB)	ŀ	ıg/l	UE	DECA 508		0.5	No relaxation	< 0.03
36.	Boron (as B)	n	ng/l		025 (Part 2)		0.5	1.0	< 0.1
37.	Mineral Oil	n	ng/l	IS 30)25 (Part 39)		0.5	No relaxation	< 0.001
38.	Tri Halo Methane	T							
	a. Bromoform						0.1	No relaxation	Absent
	b. Dibromochloromethane	n n	ng/l	AP	'HA 6232		0.1	No relaxation	Absent
	c. Bromodichloromethane		'g/'	,	1		0.06	No relaxation	Absent
	d.Chloroform						0.2	No relaxation	Absent
39.	Phenolic compounds (as C_6H_5OH)	n	ng/l		(Part 43) :1001	C	0.001	0.002	< 0.001
40.	Anionic detergents (as MBAS)	n	ng/l	IS 13428:2005 (Annex K)			0.2	1.0	< 0.001
41.	Polynuclear aromatic hydrocarbon (PAH)	ŀ	ıg/l	UD	ECA : 550		0.1	No relaxation	< 0.03
42.	Total coliform	MPN/	/100 ml		IS 1622				1600
43.	Escherichia coli	Per	100 ml		IS 1622	A	bsent	Absent	Present
Sr. No.	Test Parameter			nit Test Metho		As per IS 10500 : 2012 (Drinking Water - Specification)		Test Result	
44.	Pesticides residues								
i.	Alpha-HCH		μ	g/l	UDECA 50	8		0.01	< 0.01
ii.	Beta HCH		μ	g/l	UDECA 50)8		0.04	< 0.03
iii.	Delta- HCH		μç	a/l	UDECA 50)8		0.04	< 0.03
iv.	Alachlor		μç		UDECA 50)8		20	< 0.03
V.	Aldrin / Dieldrin		μç		UDECA 50			0.03	< 0.03
vi.	Atrazine		μς		UDECA 16			2	< 0.03
vii.	Butachlor		μς μ		UDECA 50			125	< 0.03
viii.	Chlorpyrifos		μς		UDECA 16			30	< 0.03
ix.	DDT and its Isomers							<u> </u>	< 0.03
				ug/I UDECA 50					
X.	Gamma - HCH (Lindane)	a alul		g/I UDECA 50			2		< 0.03
XI.	2,4-Dichlorophenoxyacetic	acid	μί		UDECA 16		30		< 0.03
xii.	Endosulphan		μί		UDECA 50		0.4		< 0.03
				1/1	UDECA 16	5/		3	< 0.03
xiii.	Ethion		μς					-	
xiv.	Isoproturon		μς	g/l	UDECA 16			9	< 0.03
	Isoproturon Malathion			g/l				9 190	< 0.03 < 0.03
xiv.	Isoproturon		μς	g/l g/l	UDECA 16	57			
xiv. xv.	Isoproturon Malathion		hố	g/l g/l g/l	UDECA 16 UDECA 16	57 57		190	< 0.03

Note: 1. Results relate to tested sample only.2. Test report should not be reproduced partially. 3. *Permissible limit in the absence of alternate source. 4. 'mg/l' is equivalent to 'ppm' 5. 'µg/l' is equivalent to 'ppb' 6. '<' indicates detection limit of the laboratory. 7. MPN-Most probable number.8. Results for test no. 7 are not applicable.

REMARKS: Based upon request of the party, sample was tested for above mentioned parameters only.

<u> Table 18</u>


Report on Soil Analysis, Kudag Date of collection: March-2018 Sample Location:(Old Kudag/Mining Area)

Sr. No.	Test Parameter	Measurement Unit	S1 Old Kudag/Mining Area
1.	P^{H} (1:5 water extract)	-	7.16 at 25°C
2.	Electrical Conductivity at 25ºC (1:5 water extract)	μs/cm	349
3.	Texture	-	Silty Clay
4.	Sand	%	31
5.	Slit	%	43
6.	Clay	%	26
7.	Water Holding Capacity	%	51.29
8.	Bulk Density	g/cc	1.21
9.	Porosity	%	12.58
10.	Exchangeable Calcium (as Ca)	mg/Kg	118.46
11.	Exchangeable Magnesium (as Mg)	mg/Kg	9.17
12.	Exchangeable Manganese (as Mn)	mg/Kg	2.94
13.	Exchangeable Zinc (as Zn)	mg/Kg	0.48
14.	Available Boron (as B)	mg/Kg	0.17
15.	Water Soluble Chloride (as Cl ⁺)	mg/Kg	221.54
16.	Water Soluble Sulphate (as SO4)	mg/Kg	116.58
17.	Available Potassium (as K)	mg/Kg	71.29
18.	Available Phosphorous (as P)	Kg/hec	1.42
19.	Available Nitrogen (as N)	Kg/hec	121
20.	Cadmium (as Cd)	mg/Kg	ND
21.	Chromium (as Cr)	mg/Kg	ND
22.	Copper (as Cu)	mg/Kg	ND
23.	Lead (as Pb)	mg/Kg	0.16
24.	Total Iron	mg/Kg	4.03
25.	Organic Matter	g/100g	1.21
26.	Organic Carbon	g/100g	0.63
27.	CEC	meq/100g	11.4

Note: 1. Results relate to tested sample only. **2.** Test report should not be reproduced partially. **3.** 'mg/Kg' is equivalent to 'ppm'. **4.** 'g/100g' is equivalent to '%w/w'. **5.** All parameters are in 1:5 water extract.

REMARKS: Based upon request of party, sample was tested for above mentioned parameter only.

